solve for x one upon X + 1 + 2 upon X + 2 is equal to 4 upon X + 4 x is not equal to -1 - 2 - 4
Answers
Required solution is x = 2 - 2√3, 2 + 2√3
Step-by-step explanation:
Now, 1/(x + 1) + 2/(x + 2) = 4/(x + 4) [x ≠ - 1, - 2, - 4]
or, {(x + 2) + 2 (x + 1)} / {(x + 1) (x + 2)} = 4 / (x + 4)
or, (x + 2 + 2x + 2) / (x2 + 2x + x + 2) = 4 / (x + 4)
or, (3x + 4) / (x² + 3x + 2) = 4 / (x + 4)
or, (3x + 4) (x + 4) = 4 (x² + 3x + 2)
or, 3x² + 12x + 4x + 16 = 4x² + 12x + 8
or, 3x² + 16x + 16 = 4x² + 12x + 8
or, 4x² + 12x + 8 - 3x² - 16x - 16 = 0
or, 4x² - 3x² - 16x + 12x - 16 + 8 = 0
or, (4 - 3) x² - (16 - 12)x - (16 - 8) = 0
or, x² - 4x - 8 = 0
or, (x² - 4x + 4) - 4 - 8 = 0
or, (x - 2)² - 12 = 0
or, (x - 2)² - (2√3)² = 0
or, (x - 2 + 2√3) (x - 2 - 2√3) = 0
Either x - 2 + 2√3 = 0 or, x - 2 - 2√3 = 0
i.e., x = 2 - 2√3, 2 + 2√3
∴ the required solution is x = 2 - 2√3, 2 + 2√3
Reference:
▪ Solve the given problems. - https://brainly.in/question/15792101
▪ Solve for x: {2x/(x - 5)}² + 2x/(x - 5) - 24 = 0, x ≠ 5. - https://brainly.in/question/14215443
Answer:
Hope it helps you... Roots are 2+2✓3 and 2-2✓3