Math, asked by RithunRockz, 9 months ago

Solve for x

Please answer this​

Attachments:

Answers

Answered by shivijain2003
1

Answer:

x= 7/2\sqrt{(\frac{3}{5}^1*\frac{3}{5}^-2x  }  = \frac{125}{27} \\\\Square on both the sides\\({3}/{5})^(1-2x) = \frac{5^3}{3^3} )^2\\=({3}/{5})^(1-2x) = \frac{3}{5} ^(-3) *2\\\\1-2x=-6 \\\\2x=7\\x= 7/2\\

Step-by-step explanation:

Sorry there are a few errors in formatting hope you can understand though

Answered by RvChaudharY50
2

\huge{\mathfrak{\overbrace{\underbrace{\pink{\fbox{\green{\blue{\bf\:S}\pink{o}\red{l}\orange{u}\purple{t}\blue{i}\green{o}\red{n}}}}}}}}

\red\leadsto \:  \sqrt{ {\dfrac{3}{5} }^{(1 - 2x)} }  = 4 \times \dfrac{17}{27} \\  \\  \sf \: squaring \: both \: sides \:  \\  \\ \red\leadsto \:  { \frac{3}{5} }^{(1 - 2x)}  = ( { \frac{125}{27} )}^{2}  \\  \\\red\leadsto \:  \frac{3}{5}  \times ( \frac{3}{5})^{( - 2x)}  = ( { \frac{5}{3} ) ^{3}) }^{2} \\  \\\red\leadsto \: (( \frac{3}{5})^{( - 2x)}  = (\frac{5}{3})^{6} \times  \frac{5}{3}\\\\\red\leadsto \: ( \frac{3}{5})^{( - 2x)}  = (\frac{5}{3})^{7} \\  \\ \red\leadsto \: \frac{1}{ \frac{3}{5}^{(2x)}}  =(\frac{5}{3})^{7}\\ \\ \red\leadsto \: ( \frac{5}{3})^{2x} =(\frac{5}{3})^{7} \\  \\ \red\leadsto \: 2x = 7 \\  \\ \red\leadsto \: \bold{\boxed{\large{\boxed{\orange{\small{\boxed{\huge{\red{\bold{x = 3.5}}}}}}}}}}

\rule{200}{4}

Similar questions