Math, asked by vikassingh26, 1 month ago

solve for x...
please give solution in detail​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \frac{1}{x + 1}  -  \frac{2}{ {x}^{2} - x + 1 }  <  \frac{1 - 2x}{ {x}^{3} + 1 }  \\

  \implies \frac{ {x}^{2} - x + 1 - 2x - 2 }{(x + 1)( {x}^{2} - x + 1) }   <  \frac{1 - 2x}{ (x + 1)( {x}^{2}  - x + 1) }  \\

  \implies \frac{ {x}^{2} - 3x -  1  }{(x + 1)( {x}^{2} - x + 1) }   <  \frac{1 - 2x}{ (x + 1)( {x}^{2}  - x + 1) }  \\

  \implies \frac{ {x}^{2} - 3x -  1  }{(x + 1)( {x}^{2} - x + 1) }    -   \frac{1 - 2x}{ (x + 1)( {x}^{2}  - x + 1) } < 0  \\

  \implies \frac{ {x}^{2} - 3x -  1  - 1 + 2x }{(x + 1)( {x}^{2} - x + 1) }      < 0  \\

  \implies \frac{ {x}^{2} - x -  2  }{(x + 1)( {x}^{2} - x + 1) }     < 0  \\

  \implies \frac{ {x}^{2} - 2x  + x-  2  }{(x + 1)( {x}^{2} - x + 1) }     < 0  \\

  \implies \frac{ x(x- 2)  +1( x-  2  )}{(x + 1)( {x}^{2} - x + 1) }     < 0  \\

  \implies \frac{( x + 1)(x- 2) }{(x + 1)( {x}^{2} - x + 1) }     < 0  \\

  \implies \frac{(x- 2) }{( {x}^{2} - x + 1) }     < 0  \\

Now, x^2-x+1 is always positive because its discriminant is negative and coefficient of x² is positive

So,

x \in(  - \infty ,2)

Similar questions