Math, asked by ritikakamdi6, 4 days ago

solve for X. please jaldi thoda​

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: solve \: for :value(s) \: of \: x  \\ \\  given \: quadratic \: equation \: is \\ (a + b) {}^{2} x {}^{2}  + 8(a {}^{2}  - b {}^{2} )x + 16(a - b) {}^{2}  = 0 \\  \\ comparing \: with \: ax {}^{2}  + bx + c = 0 \\ we \: have \\ a = (a + b) {}^{2}  \\ b = 8(a {}^{2}  - b {}^{2} ) \\ c = 16(a - b) \\  \\ Δ = b {}^{2}  - 4ac \\  =[ 8(a {}^{2}  - b {}^{2} )] {}^{2}  - 4 \times 16(a + b) {}^{2} (a - b) {}^{2}  \\  = 64(a {}^{2}  - b) {}^{2}  - 64(a + b)(a - b)(a + b)(a - b) \\  = 64(a {}^{2}  - b {}^{2} ) {}^{2}  - 64(a {}^{2} - b {}^{2} )(a {}^{2}  - b {}^{2} ) \\  = 64(a {}^{2}  - b {}^{2} ) {}^{2}  - 64(a {}^{2}  - b {}^{2} ) {}^{2}  \\  Δ= 0 \\  \\ we \: know \: that \\ by \: shreedharachrya \: method \\  \\ x =  \frac{ - b \: ± \sqrt{b {}^{2} - 4ac } }{2a}  \\  \\  =  \frac{ - 8(a {}^{2} - b {}^{2}  )± \sqrt{0}  }{2(a + b) {}^{2} }  \\  \\  =  \frac{ - 8( a + b)(a - b)}{2(a + b)(a + b)}  \\  \\  =  \frac{ - 4 [- (b - a)]}{a + b)}  \\  \\  =  \frac{4(b - a)}{a + b}

Similar questions