Math, asked by aadityakaushik6, 1 year ago

solve for x please please​

Attachments:

Answers

Answered by Anonymous
16

(a + b)²x² - 4abx - (a - b)² = 0

____________ [ GIVEN ]

• We have to find the value of x.

_____________________________

→ (a + b)²x² - 4abx - (a - b)² = 0

We know that;

\boxed{x \:= \:\frac{ - b \:  \pm \:  \sqrt{ {(b)}^{2}  \:  -  \: 4ac} }{2a}}

Here ..

a = (a + b)², b = -4ab, c = (a - b)²

Put them in above formula

→ x = \frac{ - (-4ab) \:  \pm \:  \sqrt{ {(-4ab)}^{2}  \:  -  \: 4(a\:+\:b)^{2}(a\:-\:b)^{2}} }{2(a\:+\:b)^{2}}

\frac{4ab \:  \pm \:  \sqrt{16 {a}^{2} {b}^{2}    \:   +   \:4 {a}^{4}   \: +  \: 4b^{4} \:  -  \: 8 {a}^{2}  {b}^{2}  }  }{2(a\:+\:b)^{2}}

\frac{4ab \:  \pm \:  \sqrt{8 {a}^{2} {b}^{2}    \:   +   \:4 {a}^{4}   \: +  \: 4b^{4}  }  }{2(a\:+\:b)^{2}}

\frac{2(2ab \:  \pm \:  \sqrt{2{a}^{2} {b}^{2}    \:   +   \: {a}^{4}   \: +  \: b^{4}  } ) }{2(a\:+\:b)^{2}}

\frac{2ab \:  \pm \:  \sqrt{2{a}^{2} {b}^{2}    \:   +   \: {a}^{4}   \: +  \: b^{4}  } }{(a\:+\:b)^{2}}

Now..

(a² + b²)² = a⁴ + b⁴ + 2a²b²

→ x = \frac{2ab \:  \pm \:  \sqrt{( {a^{2}  \:  +  \:  {b}^{2})}^{2} } }{(a\:+\:b)^{2}}

→ x = \frac{2ab \:  \pm \: ( {a^{2}  \:  +  \:  {b}^{2})} }{(a\:+\:b)^{2}}

→ x = \frac{2ab \:  +\: ( {a^{2}  \:  +  \:  {b}^{2})} }{(a\:+\:b)^{2}}

Now.. (a + b)² = a² + b² + 2ab

→ x = \frac{ {a}^{2}  \:  +  \:  {b}^{2} \:  +  \: 2ab}{{a}^{2}  \:  +  \:  {b}^{2} \:  +  \: 2ab }

→ x = 1

Similarly;

→ x = \frac{2ab \:  -\: ( {a^{2}  \:  +  \:  {b}^{2})} }{(a\:+\:b)^{2}}

→ x = \frac{ {-\:a}^{2}  \:  -  \:  {b}^{2} \:  + \: 2ab}{{a}^{2}  \:  +  \:  {b}^{2} \:  +  \: 2ab }

(a - b)² = a² + b² - 2ab

→ x = \frac{ -  {( a\:  - \: b)}^{2} }{( a \:  +  \: b)^{2} }

_____________________________

1and \frac{ -  {( a\:  - \: b)}^{2} }{( a \:  +  \: b)^{2} } are the values of x for the quadratic equation (a + b)²x² - 4abx - (a - b)² = 0.

_________ [ ANSWER ]

_____________________________

Answered by poonanjagay1985
2

Answer:

so sorry yaar points leliya

Similar questions