Math, asked by pgaurav1103, 1 year ago

solve for x pqx^2-(p^2+q^2)+pq=0
Try to solve the question with quadratic formula

Answers

Answered by MaheswariS
3

\underline{\mathcal{GIVEN:}}

\textsf{Equation is}

\mathsf{pq\,x^2-(p^2+q^2)x+pq=0}

\underline{\mathcal{TO\;FIND:}}

\textsf{Solution of the given quadratic equation}

\underline{\mathcal{SOLUTION:}}

\underline{\mathcal{FORMULA\;USED}}

\mathsf{The\;roots\;of\;ax^2+bx+c=0\;are}

\mathsf{x=\dfrac{-b\pm\,\sqrt{b^2-4ac}}{2a}}

\mathsf{Consider}

\mathsf{pq\,x^2-(p^2+q^2)x+pq=0}

\implies\mathsf{x=\dfrac{-b\pm\,\sqrt{b^2-4ac}}{2a}}

\implies\mathsf{x=\dfrac{(p^2+q^2)\pm\,\sqrt{(p^2+q^2)^2-4{\times}pq{\times}pq}}{2pq}}

\implies\mathsf{x=\dfrac{(p^2+q^2)\pm\,\sqrt{p^4+q^4+2p^2q^2-4p^2q^2}}{2pq}}

\implies\mathsf{x=\dfrac{(p^2+q^2)\pm\,\sqrt{p^4+q^4-2p^2q^2}}{2pq}}

\implies\mathsf{x=\dfrac{(p^2+q^2)\pm\,\sqrt{(p^2-q^2)^2}}{2pq}}

\implies\mathsf{x=\dfrac{(p^2+q^2)\pm\,(p^2-q^2)}{2pq}}

\implies\mathsf{x=\dfrac{(p^2+q^2)+(p^2-q^2)}{2pq},\;\dfrac{(p^2+q^2)-(p^2-q^2)}{2pq}}

\implies\mathsf{x=\dfrac{2p^2}{2pq},\;\dfrac{2q^2}{2pq}}

\implies\mathsf{x=\dfrac{p}{q},\;\dfrac{q}{p}}

\therefore\mathsf{The\;roots\;are\;\dfrac{p}{q},\;\dfrac{q}{p}}

\underline{\mathcal{FIND\;MORE:}}

Using the quadratic formula to solve 5x = 6x2 – 3, what are the values of x

https://brainly.in/question/14911682  

Using the quadratic formula, solve the equation a square b square x square - (4b power 4-3apower4)x-12a square b square =0

https://brainly.in/question/5074987  

a(x^2 + 1) = (a^2+ 1) x, a + 0 solve by formula method​

https://brainly.in/question/16238292

Similar questions