Math, asked by Itsjakegaming007, 2 days ago

Solve for x ∈R if | x – 1 | > 5.​

Answers

Answered by anindyaadhikari13
4

Solution:

Given Inequality:

 \rm \longrightarrow |x - 1|  > 5,x \in R

Now, there can be two possible cases:

 \rm \longrightarrow \begin{cases}  \rm x - 1 > 5 \:  \: iff \:  \: x - 1 > 0 \\ \rm - (x - 1) >5 \:  \: iff \: x - 1 < 0\end{cases}

Solving (i), we get:

 \rm \longrightarrow x - 1 > 5

 \rm \longrightarrow x - 1 +1  > 5 + 1

 \rm \longrightarrow x  > 6

 \rm \longrightarrow x\in (6, \infty )

Solving (ii), we get:

 \rm \longrightarrow  - (x - 1) > 5

 \rm \longrightarrow (x - 1) <  - 5

 \rm \longrightarrow x -1 + 1 <  - 5 + 1

 \rm \longrightarrow x <  - 4

 \rm \longrightarrow x\in ( - \infty , - 4)

Combining both, we get:

 \rm \longrightarrow x\in ( - \infty , - 4) \:  \cup \:(6, \infty )

★ Which is our required answer.

Answer:

 \rm \hookrightarrow x\in ( - \infty , - 4) \:  \cup \:(6, \infty )

Note:

Absolute function is defined as:

 \rm \longrightarrow  |x| =  \begin{cases}  \rm x \:  \: iff \:  \: x \geqslant  0 \\ \rm -x  \:  \: iff \: x <  0\end{cases}

Similar questions