Math, asked by gurkeerat2402, 8 months ago

Solve for x

sin-1 4x + sin-1 3x = - 2

Answers

Answered by helping27
0

Step-by-step explanation:

sin

−1

x+sin

−1

y=sin

−1

[x

1−y

2

+y

1−x

2

]

Now we solve the problem:

\quad sin^{-1}(4x)+sin^{-1}(3x)=-\frac{\pi}{2}sin

−1

(4x)+sin

−1

(3x)=−

2

π

\to sin^{-1}[4x\sqrt{1-9x^{2}}+3x\sqrt{1-16x^{2}}]=-\frac{\pi}{2}→sin

−1

[4x

1−9x

2

+3x

1−16x

2

]=−

2

π

\to 4x\sqrt{1-9x^{2}}+3x\sqrt{1-16x^{2}}=sin(-\frac{\pi}{2})=-1→4x

1−9x

2

+3x

1−16x

2

=sin(−

2

π

)=−1

\to 4x\sqrt{1-9x^{2}}+1=-3x\sqrt{1-16x^{2}}→4x

1−9x

2

+1=−3x

1−16x

2

Squaring both sides, we get:

\quad 16x^{2}(1-9x^{2})+8x\sqrt{1-9x^{2}}+1=9x^{2}(1-16x^{2})16x

2

(1−9x

2

)+8x

1−9x

2

+1=9x

2

(1−16x

2

)

\to 16x^{2}-144x^{4}+8x\sqrt{1-9x^{2}}+1=9x^{2}-144x^{4}→16x

2

−144x

4

+8x

1−9x

2

+1=9x

2

−144x

4

\to 8x\sqrt{1-9x^{2}}=-7x^{2}-1→8x

1−9x

2

=−7x

2

−1

Squaring both sides, we get:

\quad 64x^{2}(1-9x^{2})=49x^{4}-14x^{2}+164x

2

(1−9x

2

)=49x

4

−14x

2

+1

\to 64x^{2}-576x^{4}=49x^{4}-14x^{2}+1→64x

2

−576x

4

=49x

4

−14x

2

+1

\to 625x^{4}-50x^{2}+1=0→625x

4

−50x

2

+1=0

\to (25x^{2}-1)^{2}=0→(25x

2

−1)

2

=0

Either 25x^{2}-1=025x

2

−1=0 or, 25x^{2}-1=025x

2

−1=0

\implies \boxed{x=\pm \frac{1}{5},\:\pm \frac{1}{5}}⟹

x=±

5

1

5

1

This is the required solution.

Similar questions