Math, asked by RJRishabh, 1 year ago

Solve for X

tan^-1(2x)+tan^-1 (3x) = π/4 ​

Answers

Answered by TheLifeRacer
3

Hii

Step-by-step explanation:

#Answerwithquality&#BAL

Solution is in this attachment

Hope it's helpful ✌✌✌

Attachments:
Answered by rajsingh24
12

Step-by-step explanation:

we \: know \: that \\ tan {}^{ - 1} x + tan {}^{ - 1} y = tan {}^{ - 1} ( \frac{x + y}{1 - xy} ) \\ replacing \: x \: by \: 2x \: and \: y \:  by \: 3x. \\ tan {}^{ - 1} 2x + tan {}^{ - 1} 3y = tan {}^{ - 1} ( \frac{2x +3 x}{1 - 2x \times 3x} )  \\  tan { }^{ - 1}  = ( \frac{5x}{1 - 6x {}^{2} } ) \\ now \: given \\ tan {}^{ - 1} 2x + tan {}^{ - 1}3 y =  \frac{\pi}{4}  \\ tan {}^{ - 1} ( \frac{5x}{ 1 - 6x {}^{2} } ) =  \frac{\pi}{4} \\  \frac{5x}{1 - 6x {}^{2} }  = tan \frac{\pi}{4}  \\   \\ \frac{5x}{1 - 6x^2}  = 1. \\ 5x = 1  \times (1 - 6x^2) \\ 5x  = 1 - 6x {}^{2}  \\6x {}^{2}  + 5x - 1 = 0 \\ 6x { }^{2}  + 6x - x - 1 = 0 \\ 6x(x + 1) - 1(x - 1) = 0 \\ (6x  - 1)(x  + 1) = 0 \\ 6x - 1 = 0  \:  \: and \:  \: x + 1 = 0 \\  x =  \frac{1}{6}  \:  \: and \:  \:  x =  - 1

\huge{\pink{\boxed{\boxed{\boxed{\purple{\underline{\underline{\green{\mathcal{THANKS}}}}}}}}}}

Similar questions