Math, asked by mandalsamir05, 1 month ago

Solve for x : tan(π + x) + tan(2π + x) + tan(3π + x) + ⋯ + tan(10π + x) = 10 , where, −2π ≤ x ≤ 2π​

Answers

Answered by Misstension
5

Answer:

(10π +x)

hope it's help you!!!

Answered by mathdude500
8

\large\underline{\sf{Given- }}

\rm :\longmapsto\: - 2\pi \leqslant x \leqslant 2\pi

and

\rm :\longmapsto\:tan(\pi + x) + tan(2\pi + x) + tan(3\pi + x) +  -  -  -  + tan(10\pi + x) = 10

\large\underline{\sf{To\:Find - }}

The value of x.

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:tan(\pi + x) + tan(2\pi + x) + tan(3\pi + x) +  -  -  -  + tan(10\pi + x) = 10

We know that,

\boxed{ \rm{ tan(n\pi + x) = tanx \:  \forall} \: n \:  \in \: Z {}^{ + } }

So,

\rm :\longmapsto\:tan(\pi + x) = tanx

\rm :\longmapsto\:tan(2\pi + x) = tanx

\rm :\longmapsto\:tan(3\pi + x) = tanx

.

.

.

.

\rm :\longmapsto\:tan(10\pi + x) = tanx

So, given equation

\rm :\longmapsto\:tan(\pi + x) + tan(2\pi + x) + tan(3\pi + x) +  -  -  -  + tan(10\pi + x) = 10

can be rewritten as

\rm :\longmapsto\:tanx + tanx + tanx +  -  -  -  -  + tanx = 10

\rm :\longmapsto\:10tanx = 10

\rm :\longmapsto\:tanx = 1

\rm :\longmapsto\:tanx = tan\dfrac{\pi}{4}

We know,

\boxed{ \rm{ tanx = tany \:  \implies \: x = n\pi +  y \:  \forall \: n \:  \in \: Z}}

So, using this identity, we get

\rm :\implies\:x = n\pi + \dfrac{\pi}{4} \:  \forall \: n \:  \in \: Z

As, it is given that,

\rm :\longmapsto\: - 2\pi \leqslant x \leqslant 2\pi

So,

x can take the values,

\bf\implies \:x = \dfrac{\pi}{4}, \: \dfrac{5\pi}{4}, \:  - \dfrac{3\pi}{4}, \:  - \dfrac{7\pi}{4}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi \:  \forall \: n \:  \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\:  \forall \: n \:  \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\:  \forall \: n \:  \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \:  \forall \: n \:  \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\:  \forall \: n \:  \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \:  \forall \: n \:  \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Similar questions