Math, asked by mukundkumar25, 2 months ago

Solve for x :
4(x -  \dfrac{1}{x} ) {}^{2}  + 8(1 +  \dfrac{1}{x} ) = 29. \: x≠0.

Answers

Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
202

Given:–

  • 4( \text{x}- \dfrac{1}{ \text{x}} ) {}^{2} + 8(1 + \dfrac{1}{ \text{x}} ) = 29

To find:–

  • Value of x

Topic:–

  • Quadratic equations

Formula used:–

The roots of the quadratic equation ax² + bx + c = 0; where a≠0 will be obtained by this formula.

  •  \pink{ \bold{ \boxed{ \text{x} =  \dfrac{ \text - b± \sqrt{b{}^{2}  - 4ac} }{2a}}}}

Step by step explaination:-

\underline \bold{ \mathfrak{★let \: us \: assume \: the \: value \: of \:  \text{x} +  \dfrac{{1}}{ \text{x}}  \: be \: y}}

 \underline \bold{ \mathfrak{★Here \: we \: have \: to \: use \: this \: identity \: in \: terms \: of \:  \text{x} +  \dfrac{1}{ \text{x}} = y \: :- }( \text{x} +  \dfrac{1}{ \text{x}} ) {}^{2}  - (x -  \dfrac{1}{x}) {}^{2} = 4  }

\underline \bold{ \mathfrak{★Therefore,}}

\:  \:   \:  \:  \: :\implies  \text{y} {}^{2}  - ({ \text{x}-  \dfrac{1}{ \text{x}} {}^{2}  ) = 4},( \text{x} -  \dfrac{1}{ \text{x}} ) {}^{2}  =  \text{y} {}^{2}  - 4

\underline \bold{ \mathfrak{★Now, }}

\:  \:   \:  \:  \: :\implies4( \text{y} - 4) + 8 \text{y} = 29 \\  \:  \:  \:  \:  \:   : \implies4 \text{y} {}^{2}  - 16 + 8y = 29

\underline \bold{\mathfrak{★Splitting \:  middle  \: term.}}

 \:  \:  \:  \:  \:   :\implies4 \text{y} {}^{2}  +  \text{18y} -  \text{10y} - 45 = 0

\underline \bold {\mathfrak{★Factorising}}

→ 2y (2y + 9 ) - 5 (2y + 9) = 0

→ (2y + 9) (2y - 5) = 0

\underline \bold {\mathfrak{★Therefore, \:  value of  \: y  \: will  \: be  \: -9/2 \:  or  \: 5/2 }}

_________

 \underline \bold {\mathfrak{★Evaluating \:the \:value\: of \:y \:of \:-9/2 \:in \:x+1/x }}

\:  \:  \:  \:  \:   :\implies \text{x} +  \dfrac{1}{ \text{x}} =   - \dfrac{  9}{2}

\underline \bold{ \mathfrak{★Evaluating\: values\: in\:the \: given \: formula}}

\:  \:  \:  \:  \:   :\implies \text{x} =  \dfrac{ - 9± \sqrt{(9) {}^{2} - 4 \times 2 \times 2  } }{2 \times 2}

\:  \:  \:  \:  \:   :\implies   \dfrac{ - 9± \sqrt{65} }{4}

\bold{ \underline{ \mathfrak{★Again \: evaluating \: the \: second \: value \: of \: y \: that \: is \:  \frac{5}{2}  \:in \:  \text{x} +  \dfrac{ \text{1}}{ \text{x}}  }}}

\:  \:  \:  \:  \:   :\implies2x² - 5x + 2 = 0

\:  \:  \:  \:  \:   :\implies 2x² - 4x - x + 2 = 0

\bold{ \underline{\mathfrak{★Factorising..}}}

 \:  \:  \:  \:  \:   :\implies 2x(x-2) -1 (x-2)=0

 \:  \:  \:  \:  \:   :\implies (x-2) (2x-1) = 0

Thus, x = 1/2 , x = 2

Conclusion:–

 \dfrac{ - 9± \sqrt{65} }{4} \: \text{or} \: \dfrac{1}{2} ,\: 2

More to know:–

★ An equation which has only one variable in which highest power of variable is two, is known as quadratic equation.

★ The standard form of a quadratic equation is ax²+bx+c = 0, where a, b and c are all real numbers.

★ How to solve a quadratic equation by using factorisation method?

  • First solve all the fractions and the given brackets
  • Transpose all the given terms from LHS to get an equation which is in the form of ax² + bx + c = 0
  • Factorise every expression on L.H.S.
  • Now put the given each factor equal to zero and solve it.
Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\:4{\bigg(x - \dfrac{1}{x} \bigg) }^{2} + 8\bigg(x + \dfrac{1}{x}  \bigg) = 29

We know that,

\rm :\longmapsto\:{\bigg(x + \dfrac{1}{x} \bigg) }^{2} - {\bigg(x  -  \dfrac{1}{x} \bigg) }^{2} = 4

\rm :\longmapsto\:{\bigg(x + \dfrac{1}{x} \bigg) }^{2} - 4 = {\bigg(x  -  \dfrac{1}{x} \bigg) }^{2}

On substituting these values in given equation, we get

\rm :\longmapsto\:4{\bigg(x + \dfrac{1}{x} \bigg) }^{2} - 16 + 8{\bigg(x +  \dfrac{1}{x} \bigg) } = 29

\rm :\longmapsto\:4{\bigg(x + \dfrac{1}{x} \bigg) }^{2} + 8{\bigg(x +  \dfrac{1}{x} \bigg) } - 16 -  29 = 0

\rm :\longmapsto\:4{\bigg(x + \dfrac{1}{x} \bigg) }^{2} + 8{\bigg(x +  \dfrac{1}{x} \bigg) } - 45 = 0

 \red{ \boxed{ \sf{Let \:{\bigg(x + \dfrac{1}{x} \bigg) } = y -  -  - (1) }}}

So above equation can be reduced to

\rm :\longmapsto\:4 {y}^{2}  + 8y - 45 = 0

\rm :\longmapsto\:4 {y}^{2}  + 18y - 10y - 45 = 0

\rm :\longmapsto\:2y(2y + 9) - 5(2y + 9) = 0

\rm :\longmapsto\:(2y - 5)(2y + 9) = 0

\rm :\implies\:y = \dfrac{5}{2}  \:  \:  \: or \:  \:  \: y =  -  \: \dfrac{9}{2}

Consider,

\rm :\longmapsto\:\:y = \dfrac{5}{2}

\rm :\longmapsto\:\:{\bigg(x + \dfrac{1}{x} \bigg) } = \dfrac{5}{2}

\rm :\longmapsto\:\:{\bigg( \dfrac{ {x}^{2}  + 1}{x} \bigg) } = \dfrac{5}{2}

\rm :\longmapsto\: {2x}^{2} + 2 = 5x

\rm :\longmapsto\: {2x}^{2} - 5x + 2 = 0

\rm :\longmapsto\: {2x}^{2} - 4x - x + 2 = 0

\rm :\longmapsto\:2x(x - 2) - 1(x - 2) = 0

\rm :\longmapsto\:(2x - 1)(x - 2) = 0

\rm :\implies\:x = 2 \:  \:  \:  \: or \:  \:  \:  \: x = \dfrac{1}{2}

Consider,

\rm :\longmapsto\: \: y =  -  \: \dfrac{9}{2}

\rm :\longmapsto\: \:{\bigg(x + \dfrac{1}{x} \bigg) }  =  -  \: \dfrac{9}{2}

\rm :\longmapsto\: \:{\bigg( \dfrac{ {x}^{2}  + 1}{x} \bigg) }  =  -  \: \dfrac{9}{2}

\rm :\longmapsto\: {2x}^{2}  + 2 =  - 9x

\rm :\longmapsto\: {2x}^{2} + 9x + 2 = 0

Now, we are not able to split the middle terms here.

So, to find the value of x, we use Quadratic Formula, given by

\rm :\longmapsto\:x = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}

On comparing

\rm :\longmapsto\: {2x}^{2} + 9x + 2 = 0 \: with \:  {ax}^{2} + bx + c = 0 \: we \: get

\rm :\longmapsto\:a = 2

\rm :\longmapsto\:b = 9

\rm :\longmapsto\:c = 2

So, using Quadratic formula,

\rm :\longmapsto\:x = \dfrac{ - 9 \:  \pm \:  \sqrt{ {9}^{2}  - 4(2)(2)} }{2(2)}

\rm :\longmapsto\:x = \dfrac{ - 9 \:  \pm \:  \sqrt{81  - 16} }{4}

\rm :\longmapsto\:x = \dfrac{ - 9 \:  \pm \:  \sqrt{65} }{4}

Hence,

Solution of

\bf :\longmapsto\:4{\bigg(x - \dfrac{1}{x} \bigg) }^{2} + 8\bigg(x + \dfrac{1}{x}  \bigg) = 29

is

\bf :\longmapsto\:x = 2, \: \dfrac{1}{2}, \: \dfrac{ - 9 \:  \pm \:  \sqrt{65} }{4}

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions