solve for x :
Answers
Step-by-step explanation:
solve for x :
╔════════════════════════╗
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
:
╚════════════════════════╝
нσρє ıт нєłρs yσυ
_____________________
тнαηkyσυ
Step-by-step explanation:
Step-by-step explanation:
\huge{\bold☘}\mathfrak\pink{\bold{\underline{{ ℘ɧεŋσɱεŋศɭ}}}}{\bold☘}☘
℘ɧεŋσɱεŋศɭ
☘
\huge\tt\red{\bold{\underline{\underline{❥Question᎓}}}}
❥Question᎓
solve for x :
9 {x}^{2} - 6 {a}^{2} x + ( {a}^{4} - {b}^{4} ) = 09x
2
−6a
2
x+(a
4
−b
4
)=0
\huge\tt{\boxed{\overbrace{\underbrace{\blue{Answer }}}}}
Answer
╔════════════════════════╗
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
\bold{ GIVEN}GIVEN :9 {x}^{2} - 6 {a}^{2} x + ( {a}^{4} - {b}^{4} ) = 09x
2
−6a
2
x+(a
4
−b
4
)=0
⟹ 9 {x}^{2} - 6 {a}^{2} x + ( {a}^{4} - {b}^{4} ) = 0⟹9x
2
−6a
2
x+(a
4
−b
4
)=0
⟹ 9 {x}^{2} - 6 {a}^{2} x + ( {a}^{2} + {b}^{2} )( {a}^{2} - {b}^{2} ) = 0⟹9x
2
−6a
2
x+(a
2
+b
2
)(a
2
−b
2
)=0
⟹ \bold{Here\:product \:of \:coefficient \:of \:x \:square \:and \:the \:constant \:term}⟹Hereproductofcoefficientofxsquareandtheconstantterm
= 9( {a}^{2} + {b}^{2} )( {a}^{2} - {b}^{2} )=9(a
2
+b
2
)(a
2
−b
2
)
= (3 {a}^{2} + 3 {b}^{2} )(3 {a}^{2} - 3 {b}^{2} )=(3a
2
+3b
2
)(3a
2
−3b
2
)
so \: that \: 3 {a}^{2} + 3 {b}^{2} + 3 {a}^{2} - 3 {b}^{2} = 6 {a}^{2}sothat3a
2
+3b
2
+3a
2
−3b
2
=6a
2
⟹ \bold{∴ The\: given\: quadratic \:equation\: can\: be\: written\: as }⟹∴Thegivenquadraticequationcanbewrittenas
⟹ 9 {x}^{2} - (3( {a}^{2} + {b}^{2} ) + 3( {a}^{2} - {b}^{2} ))x + ( {a}^{2} + {b}^{2} )( {a}^{2} - {b}^{2} ) = 0⟹9x
2
−(3(a
2
+b
2
)+3(a
2
−b
2
))x+(a
2
+b
2
)(a
2
−b
2
)=0
⟹ 9 {x}^{2} - 3x( {a}^{2} + {b}^{2} ) - 3x( {a}^{2} - {b}^{2} ) + ( {a}^{2} + {b}^{2} )( {a}^{2} - {b}^{2} ) = 0⟹9x
2
−3x(a
2
+b
2
)−3x(a
2
−b
2
)+(a
2
+b
2
)(a
2
−b
2
)=0
⟹ 3x(3x - {a}^{2} - {b}^{2} ) - ( {a}^{2} - {b}^{2} )(3x - {a}^{2} - {b}^{2} ) = 0⟹3x(3x−a
2
−b
2
)−(a
2
−b
2
)(3x−a
2
−b
2
)=0
⟹ ( 3x - {a}^{2} - {b}^{2} )(3x - {a}^{2} + {b}^{2} ) = 0⟹(3x−a
2
−b
2
)(3x−a
2
+b
2
)=0
⟹ 3x - {a}^{2} - {b}^{2} = 0⟹3x−a
2
−b
2
=0
⟹ 3x - {a}^{2} + {b}^{2} = 0⟹3x−a
2
+b
2
=0
⟹ 3x = {a}^{2} + {b}^{2}⟹3x=a
2
+b
2
⟹ 3x = {a}^{2} - {b}^{2}⟹3x=a
2
−b
2
⟹ x = \frac{ {a}^{2} + {b}^{2} }{3}⟹x=
3
a
2
+b
2
⟹ = \frac{ {a}^{2} - {b}^{2} }{3}⟹=
3
a
2
−b
2
\bold{∴The\: solution\: of \:given\: quadratic \:equation\: are:-}∴Thesolutionofgivenquadraticequationare:−
\bold{\red{ \frac{ {a}^{2} + {b}^{2} }{3} \: and \: \frac{ {a}^{2} - {b}^{2} }{3} }}
3
a
2
+b
2
and
3
a
2
−b
2
╚════════════════════════╝
нσρє ıт нєłρs yσυ
_____________________
тнαηkyσυ