Math, asked by itgo19, 7 months ago

solve for x :
9 {x}^{2} - 6 {a}^{2} x + ( {a}^{4} - {b}^{4} ) = 0

Answers

Answered by Anonymous
156

Step-by-step explanation:

\huge{\bold☘}\mathfrak\pink{\bold{\underline{{ ℘ɧεŋσɱεŋศɭ}}}}{\bold☘}

\huge\tt\red{\bold{\underline{\underline{❥Question᎓}}}}solve for x :

9 {x}^{2} - 6 {a}^{2} x + ( {a}^{4} - {b}^{4} ) = 0

\huge\tt{\boxed{\overbrace{\underbrace{\blue{Answer</p><p> }}}}}

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

\bold{ GIVEN}:9 {x}^{2} - 6 {a}^{2} x + ( {a}^{4} - {b}^{4} ) = 0

⟹</p><p>9 {x}^{2}  - 6 {a}^{2} x + ( {a}^{4}  -  {b}^{4} ) = 0

⟹</p><p>9 {x}^{2}  - 6 {a}^{2} x + ( {a}^{2}  +  {b}^{2} )( {a}^{2}  -  {b}^{2} ) = 0

⟹</p><p>\bold{Here\:product \:of \:coefficient \:of \:x \:square \:and \:the \:constant \:term}

 = 9( {a}^{2}  +  {b}^{2} )( {a}^{2}  -  {b}^{2} )

 = (3 {a}^{2}  + 3 {b}^{2} )(3 {a}^{2} - 3 {b}^{2}  )

so \: that \: 3 {a}^{2}  + 3 {b}^{2}  + 3 {a}^{2}  - 3 {b}^{2}  = 6 {a}^{2}

⟹</p><p>\bold{∴ The\: given\: quadratic \:equation\: can\: be\: written\: as }

⟹</p><p>9 {x}^{2}  - (3( {a}^{2}  +  {b}^{2} ) + 3( {a}^{2}  -  {b}^{2} ))x + ( {a}^{2}  +  {b}^{2} )( {a}^{2}  -  {b}^{2} ) = 0

⟹</p><p>9 {x}^{2}  - 3x( {a}^{2}  +  {b}^{2} ) - 3x( {a}^{2}  -  {b}^{2} ) + ( {a}^{2}  +  {b}^{2} )( {a}^{2}  -  {b}^{2} ) = 0

⟹</p><p>3x(3x -  {a}^{2}  -  {b}^{2} ) - ( {a}^{2}  -  {b}^{2} )(3x -  {a}^{2}  -  {b}^{2} ) = 0

⟹</p><p>( 3x -  {a}^{2}  -  {b}^{2} )(3x -  {a}^{2}  +  {b}^{2} ) = 0

⟹</p><p>3x -  {a}^{2}  -  {b}^{2}  = 0

⟹</p><p>3x -  {a}^{2}  +  {b}^{2}  = 0

⟹</p><p>3x =  {a}^{2}  +  {b}^{2}

⟹</p><p>3x =  {a}^{2}  -  {b}^{2}

⟹</p><p>x =  \frac{ {a}^{2}  +  {b}^{2} }{3}

 ⟹</p><p> =  \frac{ {a}^{2}  -  {b}^{2} }{3}

\bold{∴The\: solution\: of \:given\: quadratic \:equation\: are:-}

\bold{\red{ \frac{ {a}^{2} +  {b}^{2}  }{3}  \: and \:  \frac{ {a}^{2}  -  {b}^{2} }{3} }}

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by Anonymous
1

Step-by-step explanation:

Step-by-step explanation:

\huge{\bold☘}\mathfrak\pink{\bold{\underline{{ ℘ɧεŋσɱεŋศɭ}}}}{\bold☘}☘

℘ɧεŋσɱεŋศɭ

\huge\tt\red{\bold{\underline{\underline{❥Question᎓}}}}

❥Question᎓

solve for x :

9 {x}^{2} - 6 {a}^{2} x + ( {a}^{4} - {b}^{4} ) = 09x

2

−6a

2

x+(a

4

−b

4

)=0

\huge\tt{\boxed{\overbrace{\underbrace{\blue{Answer }}}}}

Answer

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

\bold{ GIVEN}GIVEN :9 {x}^{2} - 6 {a}^{2} x + ( {a}^{4} - {b}^{4} ) = 09x

2

−6a

2

x+(a

4

−b

4

)=0

⟹ 9 {x}^{2} - 6 {a}^{2} x + ( {a}^{4} - {b}^{4} ) = 0⟹9x

2

−6a

2

x+(a

4

−b

4

)=0

⟹ 9 {x}^{2} - 6 {a}^{2} x + ( {a}^{2} + {b}^{2} )( {a}^{2} - {b}^{2} ) = 0⟹9x

2

−6a

2

x+(a

2

+b

2

)(a

2

−b

2

)=0

⟹ \bold{Here\:product \:of \:coefficient \:of \:x \:square \:and \:the \:constant \:term}⟹Hereproductofcoefficientofxsquareandtheconstantterm

= 9( {a}^{2} + {b}^{2} )( {a}^{2} - {b}^{2} )=9(a

2

+b

2

)(a

2

−b

2

)

= (3 {a}^{2} + 3 {b}^{2} )(3 {a}^{2} - 3 {b}^{2} )=(3a

2

+3b

2

)(3a

2

−3b

2

)

so \: that \: 3 {a}^{2} + 3 {b}^{2} + 3 {a}^{2} - 3 {b}^{2} = 6 {a}^{2}sothat3a

2

+3b

2

+3a

2

−3b

2

=6a

2

⟹ \bold{∴ The\: given\: quadratic \:equation\: can\: be\: written\: as }⟹∴Thegivenquadraticequationcanbewrittenas

⟹ 9 {x}^{2} - (3( {a}^{2} + {b}^{2} ) + 3( {a}^{2} - {b}^{2} ))x + ( {a}^{2} + {b}^{2} )( {a}^{2} - {b}^{2} ) = 0⟹9x

2

−(3(a

2

+b

2

)+3(a

2

−b

2

))x+(a

2

+b

2

)(a

2

−b

2

)=0

⟹ 9 {x}^{2} - 3x( {a}^{2} + {b}^{2} ) - 3x( {a}^{2} - {b}^{2} ) + ( {a}^{2} + {b}^{2} )( {a}^{2} - {b}^{2} ) = 0⟹9x

2

−3x(a

2

+b

2

)−3x(a

2

−b

2

)+(a

2

+b

2

)(a

2

−b

2

)=0

⟹ 3x(3x - {a}^{2} - {b}^{2} ) - ( {a}^{2} - {b}^{2} )(3x - {a}^{2} - {b}^{2} ) = 0⟹3x(3x−a

2

−b

2

)−(a

2

−b

2

)(3x−a

2

−b

2

)=0

⟹ ( 3x - {a}^{2} - {b}^{2} )(3x - {a}^{2} + {b}^{2} ) = 0⟹(3x−a

2

−b

2

)(3x−a

2

+b

2

)=0

⟹ 3x - {a}^{2} - {b}^{2} = 0⟹3x−a

2

−b

2

=0

⟹ 3x - {a}^{2} + {b}^{2} = 0⟹3x−a

2

+b

2

=0

⟹ 3x = {a}^{2} + {b}^{2}⟹3x=a

2

+b

2

⟹ 3x = {a}^{2} - {b}^{2}⟹3x=a

2

−b

2

⟹ x = \frac{ {a}^{2} + {b}^{2} }{3}⟹x=

3

a

2

+b

2

⟹ = \frac{ {a}^{2} - {b}^{2} }{3}⟹=

3

a

2

−b

2

\bold{∴The\: solution\: of \:given\: quadratic \:equation\: are:-}∴Thesolutionofgivenquadraticequationare:−

\bold{\red{ \frac{ {a}^{2} + {b}^{2} }{3} \: and \: \frac{ {a}^{2} - {b}^{2} }{3} }}

3

a

2

+b

2

and

3

a

2

−b

2

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Similar questions