Math, asked by Anonymous, 5 months ago

solve for x :
9 {x}^{2} - 6 {a}^{2} x + ( {a}^{4} - {b}^{4} ) = 0

Answers

Answered by Anonymous
11

Answer:

\huge\tt\red{\bold{\underline{\underline{❥Question᎓}}}}solve for x :

9 {x}^{2} - 6 {a}^{2} x + ( {a}^{4} - {b}^{4} ) = 0

\huge\mathcal{Answer}

\bold{ GIVEN}:9 {x}^{2} - 6 {a}^{2} x + ( {a}^{4} - {b}^{4} ) = 0

⟹</p><p>9 {x}^{2}  - 6 {a}^{2} x + ( {a}^{4}  -  {b}^{4} ) = 0

⟹</p><p>9 {x}^{2}  - 6 {a}^{2} x + ( {a}^{2}  +  {b}^{2} )( {a}^{2}  -  {b}^{2} ) = 0

⟹</p><p>\bold{Here\:product \:of \:coefficient \:of \:x \:square \:and \:the \:constant \:term}

 = 9( {a}^{2}  +  {b}^{2} )( {a}^{2}  -  {b}^{2} )

 = (3 {a}^{2}  + 3 {b}^{2} )(3 {a}^{2} - 3 {b}^{2}  )

so \: that \: 3 {a}^{2}  + 3 {b}^{2}  + 3 {a}^{2}  - 3 {b}^{2}  = 6 {a}^{2}

⟹</p><p>\bold{∴ The\: given\: quadratic \:equation\: can\: be\: written\: as }

⟹</p><p>9 {x}^{2}  - (3( {a}^{2}  +  {b}^{2} ) + 3( {a}^{2}  -  {b}^{2} ))x + ( {a}^{2}  +  {b}^{2} )( {a}^{2}  -  {b}^{2} ) = 0

⟹</p><p>9 {x}^{2}  - 3x( {a}^{2}  +  {b}^{2} ) - 3x( {a}^{2}  -  {b}^{2} ) + ( {a}^{2}  +  {b}^{2} )( {a}^{2}  -  {b}^{2} ) = 0

⟹</p><p>3x(3x -  {a}^{2}  -  {b}^{2} ) - ( {a}^{2}  -  {b}^{2} )(3x -  {a}^{2}  -  {b}^{2} ) = 0

⟹</p><p>( 3x -  {a}^{2}  -  {b}^{2} )(3x -  {a}^{2}  +  {b}^{2} ) = 0

⟹</p><p>3x -  {a}^{2}  -  {b}^{2}  = 0

⟹</p><p>3x -  {a}^{2}  +  {b}^{2}  = 0

⟹</p><p>3x =  {a}^{2}  +  {b}^{2}

⟹</p><p>3x =  {a}^{2}  -  {b}^{2}

⟹</p><p>x =  \frac{ {a}^{2}  +  {b}^{2} }{3}

 ⟹</p><p> =  \frac{ {a}^{2}  -  {b}^{2} }{3}

\bold{∴The\: solution\: of \:given\: quadratic \:equation\: are:-}

\bold{\red{ \frac{ {a}^{2} +  {b}^{2}  }{3}  \: and \:  \frac{ {a}^{2}  -  {b}^{2} }{3} }}

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Similar questions