Math, asked by letstweetshivaoybs9a, 3 months ago

Solve for x:
cos(tan^{-1}x)=sin(cos^{-1}\frac{3}{4})

Answers

Answered by YagneshTejavanth
1

Answer:

x = ± 3/√7

Step-by-step explanation:

 \rm cos(tan^{ - 1} x) = sin \bigg(cos^{ - 1}  \dfrac{3}{4}   \bigg)

Let tan^( - 1 ) x = a

tan a = x = x/1 = P/B

  • P = x
  • B = 1
  • H = ?

By Pythagorean theorem

H² = P² + B²

H² = x² + 1²

H = √( x² + 1 )

 \rm Now \ \ LHS = cos(tan^{ - 1} x)

= cos a = B/H = 1/√( x² + 1 )

Let cos^( - 1 ) 3/4 = b

cos b = 3/4 = B/H

  • P = ?
  • B = 3
  • H = 4

By Pythagorean theorem

H² = P² + B²

4² = P² + 3²

16 = P² + 9

P² = 16 - 9

P² = 7

P = √7

\rm Now \ \ RHS = sin \bigg(cos^{ - 1}  \dfrac{3}{4} \bigg)

= sin b = P/H = √7 /4

Now equate LHS and RHS of the equation

 \rm \dfrac{1}{ \sqrt{x^2 + 1 } }  =  \dfrac{ \sqrt{7} }{4}

  \rm   \Rightarrow 4  =   \sqrt{7( {x}^{2}  + 1)}

Squaring on both sides

  \rm   \Rightarrow  {4}^{2}  =   (\sqrt{7{x}^{2}  + 7})^{2}

  \rm   \Rightarrow  16  =   7{x}^{2}  + 7

  \rm   \Rightarrow  16   - 7=   7{x}^{2}

  \rm   \Rightarrow  9=   7{x}^{2}

  \rm   \Rightarrow  {x}^{2}  =  \dfrac{9}{7}

Taking square root on both sides

  \rm   \Rightarrow  x =   \pm\dfrac{3}{ \sqrt{7} }

Similar questions