Math, asked by NainaMehra, 1 year ago

Solve for x:

 \frac{ 2x}{x - 3}  +  \frac{1}{2x + 3}  +  \frac{3x - 9}{(x - 3)(2x  +  3)}  = 0

Classs 10

Quadratic Equation

Answers

Answered by TooFree
57

The question is supposed to be:

\dfrac{ 2x}{x - 3} + \dfrac{1}{2x + 3} + \dfrac{3x + 9}{(x - 3)(2x + 3)} = 0


----------


\dfrac{ 2x}{x - 3} +\dfrac{1}{2x + 3} + \dfrac{3x + 9}{(x - 3)(2x+3)} = 0

\dfrac{ 2x(2x + 3) + (x - 3)}{(x - 3)(2x + 3)} + \dfrac{3x + 9}{(x - 3)(2x + 3)} = 0

\dfrac{ 4x^2 + 6x + x - 3}{(x - 3)(2x + 3)} + \dfrac{3x + 9}{(x - 3)(2x +3)}=0

\dfrac{ 4x^2 + 7x - 3}{(x - 3)(2x + 3)} + \dfrac{3x + 9}{(x - 3)(2x + 3)} =0

\dfrac{ 4x^2 + 7x - 3 + 3x + 9}{(x - 3)(2x + 3)} = 0

\dfrac{4x^2 + 10x + 6}{(x - 3)(2x + 3)} = 0

\dfrac{(2(x + 1)(2x + 3)}{(x - 3)(2x + 3)}= 0

\dfrac{2(x + 1)}{(x - 3)} = 0


For the equation to be 0, then the numerator must be zero.

2(x + 1)= 0

x + 1= 0

x = -1


Answer: x = -1


Answered by Anonymous
70
\underline{\underline{\mathfrak{\large{Solution : }}}} <br />

\textsf{Correction in Question : } \\ \\ \\<br />\mathsf{\implies \dfrac{2x}{x\: - \: 3 } \: + \: \dfrac{1}{2x \: + \: 3 } \: + \: \dfrac{3x \: + \: 9}{(x \: - \: 3)(2x \: + \: 3)} \: = \: 0} <br />\\ \\

 \underline{\textsf{Given,}}

 \\ <br /><br />\mathsf{\implies \dfrac{2x}{x\: - \: 3 } \: + \: \dfrac{1}{2x \: + \: 3 } \: + \: \dfrac{3x \: + \: 9}{(x \: - \: 3)(2x \: + \: 3)} \: = \: 0} <br />

 \\ \mathsf{\implies \dfrac{2x( 2x \: + \: 3) \: + \: 1 (x \: - \: 3 ) \: + \: (3x \: + \: 9)}{(x \: - \: 3)(2x \: + \: 3)} \: = \: 0}

 \\ \mathsf{\implies 2x( 2x \: + \: 3) \: + \: 1 (x \: - \: 3 ) \: + \: (3x \: + \: 9) \:} \\ \mathsf{ = \: 0 \: \times \: (x \: - \: 3)(2x \: + \: 3)\: }

 \\ <br />\mathsf{\implies 4{x}^{2} \: + \: 6x \: + \: x \: - \: 3 \: + \: 3x \: + \: 9 \: = \: 0}

\mathsf{\implies 4{x}^{2} \: + \: 6x \: + \: x \: + \: 3x \: - \: 3 \: + \: 9 \: = \: 0} \\ \\<br /><br />\mathsf{\implies 4{x}^{2} \: + \: 10x \: + \: 6 \: = \: 0}

\textsf{Take out 2 common factor : } \\ \\<br /><br />\mathsf{\implies 2(2{x}^{2} \: + \: 5x \: + \: 3 )\: = \: 0} \\ \\<br /><br />\mathsf{\implies 2x^{2} \: + \: 5x \: + \: 3 \: = \: \dfrac{0}{2}} \\ \\<br /><br />\mathsf{\implies 2x^{2} \: + \: 5x \: + \: 3 \: = \: 0}<br />

<br />\textsf{Here,} \\ \\<br /><br />\mathsf{\longrightarrow Coefficient \: of \: x^{2}(a) \: = \: 2}\\ \\<br /><br />\mathsf{\longrightarrow Coefficient \: of \: x(b) \: = \: 5} \\ \\<br /><br />\mathsf{\longrightarrow Constant \: term (c) \: = \: 3 }

\underline{\textsf{Using Quadratic Formula : }} \\ \\ \\ <br /><br />\mathsf{\implies x \: = \: \dfrac{-b \: \pm \: \sqrt{ \: b^{2} \: - \: 4ac \: }}{2a} }\\ \\

\textsf{Substitute the value of a , b and c.} \\ \\ \\<br /><br />\mathsf{\implies x \: = \: \dfrac{-5 \: \pm \: \sqrt{\: 5^{2} \: - \: 4 \: \times \: 2 \: \times 3 }}{2 \: \times \: 2 }}

\\ \mathsf{\implies x \: = \: \dfrac{-5 \: \pm \: \sqrt{ \: 25 \: - \: 24\: }}{4}} \\ \\ \\<br /><br />\mathsf{\implies x \: = \: \dfrac{-5 \: \pm \sqrt{1}}{4}} \\ \\ \\<br /><br />\mathsf{\implies x \: = \: \dfrac{-5 \: \pm \: 1 }{4}} \\

\textsf{Now,} \\ \\<br /><br />\mathsf{\implies x \: = \: \dfrac{-5 \: + \: 1 }{4} \quad \: or \: \implies x \: = \: \dfrac{-5 \: - \: 1 }{4}} \\ \\ \\<br /><br />\mathsf{\implies x \: = \: \dfrac{-4}{\: 4} \quad \: or \: \implies x \: = \: \dfrac{ -5 \: - \: 1 }{4}} \\ \\ \\<br /><br />\mathsf{\implies x \: = \: -1 \quad \: or \: \implies x \: = \: \dfrac{-6}{ \: 4} \: = \: \dfrac{-3}{ \: 2}}

\mathsf{But, \: here \: we \: will \: ignore \: x \: = \: \dfrac{-3}{2} \: because } \\ \textsf{when we will put this value in the above equation } \\ \textsf{then, denominator will become 0 and it won't satisfy }\\ \textsf{the given equation. }<br />



 \\ \boxed{\large{\mathsf{The \: required \: answer\: is\: -1 \: .}}}

MonsieurBrainly: Normal font in latex coding
TooFree: -3/2 cannot be an answer because the denominator cannot be zero.
Anonymous: Right , but steps are also right na
Anonymous: what is the mistake in step ?
TooFree: 2x^2+5x+3 = (x + 1) (2x + 3) then the (2x + 3) can be canceled out.
TooFree: before you cross multiply
Anonymous: Thanks !!
Ramlayaksingh3: advaibhav I want to give answer like yours.please explain me
Ramlayaksingh3: how to add 1/2 in fraction
isabella4: nice !!
Similar questions