Math, asked by somamanna436, 5 days ago

Solve for x :
 \frac{x - {a}^{2} }{b + c} + \frac{x - {b}^{2} }{c + a} + \frac{x - {c}^{2} }{a + b} = 4(a + b +c)
Please answer the question.​

Answers

Answered by XxitzZBrainlyStarxX
6

Question:-

Solve for x :

 \sf \large\frac{x - {a}^{2} }{b + c} + \frac{x - {b}^{2} }{c + a} + \frac{x - {c}^{2} }{a + b} = 4(a + b +c).

Given:-

 \sf \large \frac{x - {a}^{2} }{b + c} + \frac{x - {b}^{2} }{c + a} + \frac{x - {c}^{2} }{a + b} = 4(a + b +c).

To Find:-

  • The value of x.

Solution:-

 \sf \large \frac{x - {a}^{2} }{b + c} + \frac{x - {b}^{2} }{c + a} + \frac{x - {c}^{2} }{a + b} = 4(a + b +c).

 \sf \large \Rightarrow  \bigg \{ \frac{x - a {}^{2} }{b + c}  - (b + c + 2a) \bigg \} +  \bigg \{ \frac{x - b {}^{2} }{c + a}  - (c + a + 2b) \bigg \} +  \bigg \{ \frac{x - c {}^{2} }{a + b}  - (a + b + 2c) \bigg \}.

 \sf \large ⇒ \bigg \{ \frac{x - a  {}^{2} { - b  }^{2} - c {}^{2} - 2ab - 2bc - 2ca  }{b + c}  \bigg \} +  \bigg \{ \frac{x - a {}^{2}  - b {}^{2}  - c {}^{2} - 2ab - 2bc - 2ca }{c + a}  \bigg \} +  \bigg \{ \frac{x - a {}^{2} - b { }^{2}  - c {}^{2}  - 2ab - 2bc - 2ca }{a + b}  \bigg \} = 0.

 \sf \large⇒ (x - a {}^{2}  - b {}^{2}  - c {}^{2}  - 2ab - 2bc - 2ca) \:  \bigg \{ \frac{1}{b + c}  +  \frac{1}{c + a}  +  \frac{1}{a + b}  \bigg \} = 0.

 \sf \large⇒  -  \bigg \{x - (a + b + c) {}^{2}  \bigg \} \: \bigg \{ \frac{1}{b + c}  +  \frac{1}{c + a}  +  \frac{1}{a + b}  \bigg \} = 0.

 \sf \large Thus, \: x - (a + b + c) {}^{2}  = 0 \: and \\  \sf \large \frac{1}{b +c}  +  \frac{1}{c + a}  +  \frac{1}{a + b} ≠  0.

 \sf \large ⇒ (a + b + c) {}^{2} .

Answer:-

 \sf \large \therefore x = (a + b + c) {}^{2} .

Hope you have satisfied.

Similar questions