Math, asked by pkarn125, 7 months ago

solve for x

 \frac{x - a}{x - b}  +  \frac{x - b}{x - a}  =  \frac{a}{b}  +  \frac{b}{a}
please give detailed solution

Answers

Answered by manitkapoor2
2

Answer:

x = 0,a +  b

Step-by-step explanation:

\frac{x- a}{x - b} + \frac{x - b}{x - a} = \frac{a}{b} + \frac{b}{a}

\frac{(x- a)^2 + (x - b)^2}{(x-a)(x - b)} =  \frac{b^2 + a^2}{ab}

\frac{2x^2 -2(a+b)x + (a^2+b^2)}{x^2 - (a+b)x + ab} =  \frac{b^2 + a^2}{ab}

2abx^2 -2ab(a+b)x + ab(a^2+b^2)=  (b^2 + a^2)x^2 - (b^2 + a^2)(a+b)x + ab(b^2 + a^2)

2abx^2 -2ab(a+b)x =  (b^2 + a^2)x^2 - (b^2 + a^2)(a+b)x

(b^2 + a^2)(a+b)x -2ab(a+b)x =  (a - b)^2x^2

(a - b)^2(a+b)x =  (a - b)^2x^2

x^2 - (a+b)x = 0

x(x - (a+b)) = 0

x = 0,a +  b

Similar questions
Math, 1 year ago