Math, asked by adityasingh30, 11 months ago

solve for X
pqx {}^{2}  - (p { }^{2} |  + q {}^{2} )x + pq = 0

Answers

Answered by Anonymous
6

Answer:

  \boxed{\mathbf{x =  \frac{p}{q}  \:  \: or \:  \:  \frac{q}{p} }}

Step-by-step explanation:

Given equation,

 \mathbf{pqx {}^{2}  - (p {}^{2} + q {}^{2}) + pq = 0  }

By splitting the middle term,

 \mathbf{pqx {}^{2}  -  px^{2}  - qx{}^{2}  + pq = 0 } \\  \\  \mathbf{ \implies \: px(qx - p) - q(qx - p) = 0} \\  \\  \mathbf{ \implies \: (px - q)(qx - p) = 0} \\  \\  \mathbf{ \implies \:px - q = 0 \:  \: or \:  \: qx - p = 0 }  \\  \\ \ \implies \: \boxed{ \mathbf{x =  \frac{q}{p} \:  \: or \:  \:  \frac{p}{q}  }}

The zeros of the given quadratic equation are p/q and q/p.

Similar questions