Math, asked by Dabi30, 2 months ago

Solve for x :-

 \sf{1) \:  \dfrac{a}{x - a}  +  \dfrac{b}{x - b}  =  \dfrac{a + b}{x - a - b}}
 \sf{2) \:  \dfrac{x - a}{ {a}^{2} -  {b}^{2}  }  =  \dfrac{x - b}{ {b}^{2}  -  {a}^{2} } }
 \sf{3) \: (3 +  \sqrt{ 3})x + 2 = 5 +  3\sqrt{3}}

Answers

Answered by OtakuSama
49

Question:-

Solve for x:-

\sf{1) \: \dfrac{a}{x - a} + \dfrac{b}{x - b} = \dfrac{a + b}{x - a - b}}

 \\ \sf{2) \: \dfrac{x - a}{ {a}^{2} - {b}^{2} } = \dfrac{x - b}{ {b}^{2} - {a}^{2} } }

 \\ \sf{3) \: (3 + \sqrt{ 3})x + 2 = 5 + 3\sqrt{3}}

Required Answers:-

\sf{ \bold{1) \: \dfrac{a}{x - a} + \dfrac{b}{x - b} = \dfrac{a + b}{x - a - b}}}

 \\  \sf{ \implies{ \dfrac{a}{x - a} +  \dfrac{b}{x - b}   =  \dfrac{a}{x - a - b}  +  \dfrac{b}{x - a - b}}}

 \\  \sf{ \implies{ \dfrac{a}{x - a}  -  \dfrac{a}{x - a - b} =  \dfrac{b}{x - a - b} -  \dfrac{b}{x - b}  }}

 \\  \sf{ \implies{ \dfrac{ \cancel{ax -  {a}^{2}} - ab \:  \cancel{ - ax +  {a}^{2}  }}{(x - a - b)(x - a)}  =  \dfrac{ \cancel{bx -  {b}^{2}  - bx} + ab \:  \cancel{ +  {b}^{2} }}{(x - a - b)(x - b)}}}

 \\  \sf{ \implies{ \dfrac{ - ab}{(x - a)(x - a - b)}  =  \dfrac{ab}{(x - a - b)(x - b)}}}

 \\  \sf{ \implies{ \dfrac{ - 1}{(x - a)(x - a - b)}  =  \dfrac{1}{(x - a - b)(x - b)}}}

 \\  \sf{ \implies{ \dfrac{ - 1}{x - a}  =  \dfrac{1}{x - b}}}

 \\  \sf{ \implies{x - a =  - x + b}}

 \\  \sf{ \implies{x + x = a + b}}

 \\  \sf{ \implies{2x = a + b}}

 \\  \therefore{ \sf{x =  \red{ \dfrac{a + b}{2}}}}

 \\ \sf{ \bold{2) \: \dfrac{x - a}{ {a}^{2} - {b}^{2} } = \dfrac{x - b}{ {b}^{2} - {a}^{2} }}}

 \\  \sf{ \implies{\dfrac{x - a}{ {a}^{2} - {b}^{2} } = \dfrac{x - b}{  - ( {a }^{2} -  {b}^{2})}}}

 \\  \sf{ \implies{\dfrac{x - a}{ 1 } = \dfrac{x - b}{  - 1}}}

 \\  \sf{ \implies{x - b =  - x - a}}

 \\  \sf{ \implies{x + x = a + b}}

 \\  \sf{ \implies{2x =  \dfrac{a + b}{2}}}

 \\  \sf{ \therefore{x =  \red{ \dfrac{a + b}{2}}}}

 \\ \sf{ \bold{{3) \: (3 + \sqrt{ 3})x + 2 = 5 + 3\sqrt{3}}}}

  \\  \sf{ \implies{(3 +  \sqrt{3} )x = 5 + 3 \sqrt{3}  - 2}}

 \\  \sf{ \implies{(3 +  \sqrt{3}) x = 3 +  3\sqrt{3}}}

 \\  \sf{ \implies{(3 +  \sqrt{3}) x = \sqrt{3} (\sqrt{3} +3)=  \sqrt{3} (3+\sqrt{3} )}}

Dividing both sides by 3+√3 we get,

 \\  \sf{ \therefore{x =  \red{3}}}

Answered by Anonymous
0

Answer:

\huge \sf {\purple {\underline {\purple{\underline {❥B•T•S࿐ }}}}}\huge\blue{\mid{\fbox{\tt{MY\:QUESTION}}\mid46 46 10:34 D

V 0.00

\huge\color {pink}</p><p>\boxed{\colorbox{azure}{</p><p>Answer}

CLOSE

|||\huge\blue{\mid{\fbox{\tt{MY\:QUESTION}}\mid\huge\color {pink} \boxed{\colorbox{azure}{ Answer}

Similar questions