Math, asked by Mister360, 3 months ago

Solve for x:
\sf \frac{x + 1}{x - 1} + \frac{x - 2}{x + 2} = 3\; where \; x \neq 1,-2

Answers

Answered by 2005amirtha
3

 \frac{(x  + 1)(x + 2) + (x - 2)(x - 1)}{(x - 1)(x + 2)}  =3 \\   \frac{ {x}^{2}  + x + 2x + 2 - 2x +  {x}^{2} - x + 2 }{ {x}^{2}  - x + 2x - 2}  = 3 \\  \frac{2 {x}^{2} }{ {x}^{2}  - x + 2x - 2}  = 3 \\ 2 {x}^{2}  = 3( {x}^{2}  - x + 2x - 2) \\ 2 {x}^{2}  = 3 {x}^{2}  - 3x + 6x - 6 \\ 0 =  {x}^{2}  + 3x - 6 \\

you can solve the equation and you get the answer !! sorry I couldn't do till the end , I have my exam tomorrow...

(mark as brainliest if you are satisfied !)

Answered by DüllStâr
69

Given Equation

\sf \dfrac{x + 1}{x - 1} + \dfrac{x - 2}{x + 2}  = 3

Step by step explanation

 \\  \\

 \dashrightarrow \:  \: \sf   \dfrac{ \bigg(\dfrac{x + 1}{x - 1} (x - 1)(x + 2) \bigg)+  \normalsize \bigg( \dfrac{x - 2}{x + 2} (x - 1)(x + 2)  \bigg)} {(x - 1)(x + 2) } = 3 \\

 \\  \\

 \dashrightarrow \:  \: \sf   \dfrac{ \bigg(\dfrac{x + 1}{\cancel{x - 1}} \:  \:  \cancel{(x - 1)} \: (x + 2) \bigg)+  \normalsize \bigg( \dfrac{x - 2}{\cancel{x + 2}} \:  (x - 1) \: \cancel{(x + 2) } \bigg)} {(x - 1)(x + 2) } = 3 \\

 \\  \\

 \dashrightarrow \:  \: \sf   \dfrac{ \bigg(\dfrac{x + 1}{{1}} \:  \:   (x + 2) \bigg)+  \normalsize \bigg( \dfrac{x - 2}{1} \:  (x - 1) \: \bigg)} {(x - 1)(x + 2) } = 3 \\

 \\  \\

 \dashrightarrow \:  \: \sf   \dfrac{(x + 1)(x + 2) + (x - 2)(x - 1)}{(x - 1)(x + 2)} = 3 \\

 \\  \\

 \dashrightarrow \:  \: \sf   \dfrac{( {x}^{2}  + 2x + x + 2x)+( {x}^{2}  - x - 2x + 3)}{(x - 1)(x + 2)} = 3 \\

 \\  \\

 \dashrightarrow \:  \: \sf   \dfrac{( {x}^{2}  + 3x + 2x)+( {x}^{2}  - 3x + 3)}{(x - 1)(x + 2)} \\

 \\  \\

 \dashrightarrow \:  \: \sf   \dfrac{{x}^{2}   \cancel{+ 3x }+ 2x+{x}^{2}  \:  \: \cancel{  - 3x} + 3}{ {x}^{2}  + 2x - x - 2} = 3 \\

 \\  \\

 \dashrightarrow \:  \: \sf   \dfrac{{2x}^{2}   + 2x+ 3}{ {x}^{2} + x- 2} = 3 \\

 \\  \\

 \dashrightarrow \:  \: \sf {2x}^{2}   + 2x+ 3= 3 ({x}^{2} + x- 2)\\

 \\  \\

 \dashrightarrow \:  \: \sf {2x}^{2}   + 2x+ 3= 3 {x}^{2} +3 x- 6\\

 \\  \\

 \dashrightarrow \:  \: \sf0= 3 {x}^{2} - {2x}^{2} +3 x - 2x- 6 + 3\\

 \\  \\

 \dashrightarrow \:  \: \sf0= 2{x}^{2} +x- 3\\

 \\

 \dashrightarrow \:  \: \sf2{x}^{2} +x- 3 = 0\\

 \\  \\

 \dashrightarrow \:  \: \sf2{x}^{2} + 3x - 2x- 3 = 0\\

 \\  \\

 \dashrightarrow \:  \: \sf x(2x+ 3 )- (2x +  3) = 0\\

 \\  \\

 \dashrightarrow \:  \: \sf (x - 1)(2x+ 3 ) = 0\\

 \\

Value of x :-

  • x - 1 = 0
  • x = 1

or

  • 2x + 3 = 0
  • 2x = -3
  • x = -3/2
  • x = 1.5

as it is told value of x is not equals to 1

 \therefore \:  \:  \underline{ \sf{value \: of \: x =  \bf1.5}}


Saby123: Great
Similar questions