Math, asked by madhav5245, 1 month ago

Solve for x
 \sf \:  \sqrt{2x - 1}  +  \sqrt{3x - 2}  =  \sqrt{4x - 3}  +  \sqrt{5x - 4}
Please don't spam.

Urgently required

Class NTSE Quadratic Equations.

✔️Moderators

✔️Brainly Star

✔️Genius



Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given equation is

 \rm \: \sqrt{2x - 1} + \sqrt{3x - 2} = \sqrt{4x - 3} + \sqrt{5x - 4}

To solve such type of equations,

Let assume that

\red{\rm :\longmapsto\:a =  \sqrt{2x - 1}}

\red{\rm :\longmapsto\:b =  \sqrt{3x - 2}}

\red{\rm :\longmapsto\:c =  \sqrt{4x - 3}}

\red{\rm :\longmapsto\:d =  \sqrt{5x - 4}}

So, given equation can be rewritten as

\rm :\longmapsto\:a + b = c + d -  -  - (1)

Now, Consider

\red{\rm :\longmapsto\: {a}^{2} -  {b}^{2}}

\rm \:  =  \:2x - 1 - (3x - 2)

\rm \:  =  \:2x - 1 - 3x + 2

\rm \:  =  \:1 - x

\red{\rm :\longmapsto\: \boxed{ \rm \:{a}^{2} -  {b}^{2} = 1 - x } -  -  -  -  - (2)}

Now, Consider

\red{\rm :\longmapsto\: {c}^{2} -  {d}^{2}}

\rm \:  =  \:4x - 3 - (5x - 4)

\rm \:  =  \:4x - 3 - 5x + 4

\rm \:  =  \:1 - x

\red{\rm :\longmapsto\: \boxed{ \rm \:{c}^{2} -  {d}^{2} = 1 - x } -  -  -  -  - (3)}

From equation (2) and (3), we concluded that

\rm :\longmapsto\: {a}^{2}  -  {b}^{2}  =  {c}^{2}  -  {d}^{2}

\rm :\longmapsto\:(a + b)(a - b) = (c + d)(c - d)

So, using equation (1), we get

\rm :\longmapsto\:(c + d)(a - b) = (c + d)(c - d)

\rm :\longmapsto\:a - b = c - d -  -  -  - (4)

On adding equation (1) and equation (4), we get

\rm :\longmapsto\:2a = 2c

\rm :\longmapsto\:a = c

\rm :\longmapsto\: \sqrt{2x - 1} =  \sqrt{4x - 3}

On squaring both sides,

\rm :\longmapsto\:2x - 1 = 4x - 3

\rm :\longmapsto\:2x -4x= 1- 3

\rm :\longmapsto\: -2x= - 2

\bf :\longmapsto\:x=1

Verification

Given equation is

 \rm \: \sqrt{2x - 1} + \sqrt{3x - 2} = \sqrt{4x - 3} + \sqrt{5x - 4}

On substituting the value of x = 1

 \rm \: \sqrt{2 - 1} + \sqrt{3 - 2} = \sqrt{4 - 3} + \sqrt{5 - 4}

 \rm \: \sqrt{1} + \sqrt{1} = \sqrt{1} + \sqrt{1}

 \rm \: 1 + 1 = 1 + 1

 \rm \: 2 = 2

Similar questions