Math, asked by letstweetshivaoybs9a, 5 hours ago

Solve for x:
(sin^{-1}x)^{3}+(cos^{-1}x)^{3}=\frac{\pi^{3}}{32}

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Identities Used :-

\boxed{ \sf{ \:  {sin}^{ - 1}x +  {cos}^{ - 1}x =  \frac{\pi}{2}}}

\boxed{ \sf{ \:  {x}^{3}  +  {y}^{3}  =  {(x + y)}^{3}  - 3xy(x + y)}}

\large\underline{\sf{Given- }}

\rm :\longmapsto\: {( {sin}^{ - 1}x)}^{3}  +  {({cos}^{ - 1}x)}^{3}  = \dfrac{\pi^{3} }{32}

can be rewritten as

\rm :\longmapsto\: {\bigg( {sin}^{ - 1}x + {cos}^{ - 1}x\bigg) }^{3} - 3 {sin}^{ - 1}x{cos}^{ - 1}x( {sin}^{ - 1}x + {cos}^{ - 1}x) = \dfrac{\pi^{3} }{32}

\rm :\longmapsto\: {\bigg(\dfrac{\pi}{2}\bigg) }^{3} - 3 {sin}^{ - 1}x{cos}^{ - 1}x\bigg(\dfrac{\pi}{2}\bigg)  = \dfrac{\pi^{3} }{32}

\rm :\longmapsto\:\dfrac{\pi^{3} }{8} - \dfrac{3\pi}{2} {sin}^{ - 1}x{cos}^{ - 1}x = \dfrac{\pi^{3} }{32}

\rm :\longmapsto\:\dfrac{\pi^{3} }{8} -\dfrac{\pi^{3} }{32} =  \dfrac{3\pi}{2} {sin}^{ - 1}x{cos}^{ - 1}x

\rm :\longmapsto\:\dfrac{4\pi^{3}  -  {\pi}^{3} }{32}  =  \dfrac{3\pi}{2} {sin}^{ - 1}x{cos}^{ - 1}x

\rm :\longmapsto\:\dfrac{3\pi^{3} }{32}  =  \dfrac{3\pi}{2} {sin}^{ - 1}x{cos}^{ - 1}x

\rm :\longmapsto\:\dfrac{\pi^{2} }{16}  =   {sin}^{ - 1}x{cos}^{ - 1}x

\rm :\longmapsto\:\dfrac{\pi^{2} }{16}  =   {sin}^{ - 1}x \bigg(\dfrac{\pi}{2} -  {sin}^{ - 1}x \bigg)

\rm :\longmapsto\:\dfrac{\pi^{2} }{16}  =   \dfrac{\pi}{2} {sin}^{ - 1}x -  {( {sin}^{ - 1}x)}^{2}

\rm :\longmapsto\: {( {sin}^{ - 1}x)}^{2} - \dfrac{\pi}{2} {sin}^{ - 1}x + \dfrac{\pi^{2} }{16} = 0

\rm :\longmapsto\:16 {( {sin}^{ - 1}x)}^{2}  - 8\pi \:  {sin}^{ - 1}x +  {\pi}^{2}  = 0

\rm :\longmapsto\: {(4 {sin}^{ - 1}x - \pi)}^{2}  = 0

\rm :\longmapsto\:4 {sin}^{ - 1}x - \pi= 0

\rm :\longmapsto\:4 {sin}^{ - 1}x - = \pi

\rm :\longmapsto\: {sin}^{ - 1}x = \dfrac{\pi}{4}

\rm :\longmapsto\:x = sin\dfrac{\pi}{4}

\bf\implies \:x = \dfrac{1}{ \sqrt{2} }

Additional Information :-

\boxed{ \sf{ \:  {sec}^{ - 1}x +  {tan}^{ - 1}x =  \frac{\pi}{2}}}

\boxed{ \sf{ \:  {cosec}^{ - 1}x +  {cot}^{ - 1}x =  \frac{\pi}{2}}}

\boxed{ \sf{ \:  {sin}^{ - 1}x +  {sin}^{ - 1}y =  {sin}^{ - 1}(x \sqrt{1 -  {y}^{2} } + y \sqrt{1 -  {x}^{2} }}}

\boxed{ \sf{ \:  {sin}^{ - 1}x - {sin}^{ - 1}y =  {sin}^{ - 1}(x \sqrt{1 -  {y}^{2} }  - y \sqrt{1 -  {x}^{2} }}}

\boxed{ \sf{ \:  {cos}^{ - 1}x - {cos}^{ - 1}y =  {cos}^{ - 1}(xy +  \sqrt{1 -  {y}^{2} }  \sqrt{1 -  {x}^{2} }}}

\boxed{ \sf{ \:  {cos}^{ - 1}x  + {cos}^{ - 1}y =  {cos}^{ - 1}(xy - \sqrt{1 -  {y}^{2} }  \sqrt{1 -  {x}^{2} }}}

Similar questions