Math, asked by karansinghsaggu, 9 hours ago

Solve for x

sinx - sin3x + sin5x = 0

Find general solution​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\: \: sinx - sin3x + sin5x = 0

can be rewritten as

\rm :\longmapsto\:(sin5x + sinx) - sin3x = 0

We know,

 \red{\boxed{\tt{ sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}}

So, using this identity, we get

\rm :\longmapsto\:2sin\bigg[\dfrac{5x + x}{2} \bigg]cos\bigg[\dfrac{5x - x}{2} \bigg] - sin3x = 0

\rm :\longmapsto\:2sin3x \: cos2x  - sin3x= 0

\rm :\longmapsto\:sin3x(2cos2x - 1) = 0

\rm\implies \:sin3x = 0 \:  \:  \: or \:  \:  \: cos2x = \dfrac{1}{2}

Now, Consider

\rm :\longmapsto\:sin3x = 0

We know,

 \red{\boxed{\tt{ sinx = 0 \rm\implies \:\sf x = n\pi  \: \forall \: n \in \: Z}}}

\rm\implies \:3x = n\pi  \: \forall \: n \in \: Z

\rm\implies \:\boxed{\tt{ x = \dfrac{n\pi}{3}   \: \forall \: n \in \: Z}} \\

Now, Consider

\rm :\longmapsto\:cos2x = \dfrac{1}{2}

\rm :\longmapsto\:cos2x =cos \dfrac{\pi}{3}

We know,

 \red{\boxed{\tt{ cosx = cosy  \: \rm\implies \: \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z}}}

So, using this identity, we get

\rm \longmapsto\: 2x = 2n\pi \pm \: \dfrac{\pi}{3} \: \forall \: n \in \: Z

\rm\implies \:  \boxed{\tt{ \: x = n\pi \pm \: \dfrac{\pi}{6} \: \forall \: n \in \: Z \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Answered by OoAryanKingoO78
1

Answer:

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\: \: sinx - sin3x + sin5x = 0

can be rewritten as

\rm :\longmapsto\:(sin5x + sinx) - sin3x = 0

We know,

 \red{\boxed{\tt{ sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}}

So, using this identity, we get

\rm :\longmapsto\:2sin\bigg[\dfrac{5x + x}{2} \bigg]cos\bigg[\dfrac{5x - x}{2} \bigg] - sin3x = 0

\rm :\longmapsto\:2sin3x \: cos2x  - sin3x= 0

\rm :\longmapsto\:sin3x(2cos2x - 1) = 0

\rm\implies \:sin3x = 0 \:  \:  \: or \:  \:  \: cos2x = \dfrac{1}{2}

Now, Consider

\rm :\longmapsto\:sin3x = 0

We know,

 \red{\boxed{\tt{ sinx = 0 \rm\implies \:\sf x = n\pi  \: \forall \: n \in \: Z}}}

\rm\implies \:3x = n\pi  \: \forall \: n \in \: Z

\rm\implies \:\boxed{\tt{ x = \dfrac{n\pi}{3}   \: \forall \: n \in \: Z}} \\

Now, Consider

\rm :\longmapsto\:cos2x = \dfrac{1}{2}

\rm :\longmapsto\:cos2x =cos \dfrac{\pi}{3}

We know,

 \red{\boxed{\tt{ cosx = cosy  \: \rm\implies \: \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z}}}

So, using this identity, we get

\rm \longmapsto\: 2x = 2n\pi \pm \: \dfrac{\pi}{3} \: \forall \: n \in \: Z

\rm\implies \:  \boxed{\tt{ \: x = n\pi \pm \: \dfrac{\pi}{6} \: \forall \: n \in \: Z \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

Similar questions