Math, asked by misspunitha59, 1 year ago

solve for x
 =  \sqrt{3{ \:} }  x {}^{2} -  \sqrt[2]{2}x -  \sqrt[2]{3}  = 0

Answers

Answered by AadilPradhan
0

Answer:

two values of x are

(1 + \sqrt{7} )/( \sqrt{2}.\sqrt{3} ) = 1.48

(1 - \sqrt{7} )/( \sqrt{2}.\sqrt{3} ) = -0.67

Step-by-step explanation:

\sqrt[2]{x} means \sqrt{x}

\sqrt{3} x^{2} - \sqrt{2}x^{} - \sqrt{3} = 0

By sridharacharaya formula:

a = \sqrt{3}

b = -\sqrt{2}

c = -\sqrt{3}

x^{} = ( \sqrt{2} ± \sqrt{2 + (4\sqrt{3}.\sqrt{3})  } )/( 2.\sqrt{3} )

 = ( \sqrt{2} ± \sqrt{14} )/ ( 2.\sqrt{3} )

when the sign is positive:

= ( \sqrt{2} + \sqrt{14} )/ ( 2.\sqrt{3} )

= ( \sqrt{2} ( 1 + \sqrt{7}) ) )/( \sqrt{2}.\sqrt{2} .\sqrt{3} )

= (1 + \sqrt{7} )/( \sqrt{2}.\sqrt{3} )

= 1.48

when the sign is negative:

= ( \sqrt{2} - \sqrt{14} )/ ( 2.\sqrt{3} )

= ( \sqrt{2} ( 1 - \sqrt{7}) ) )/( \sqrt{2}.\sqrt{2} .\sqrt{3} )

= (1 - \sqrt{7} )/( \sqrt{2}.\sqrt{3} )

= -0.67

two values of x are 1.48 and -0.67

Similar questions