Math, asked by Dhdfr, 10 months ago

solve for x:
 \\  \\  \\  \\  \\  \\

 \frac{x - 1}{x - 2} +  \frac{x - 3}{x - 4} = 3 \frac{1}{3} \:  \:  \:  \:  \: (x≠2,4). \:
 \\  \\  \\  \\

Answers

Answered by Anonymous
28

  \huge\underline{\underline{\bf{ \purple{Solution:-}}}}

 \tt \: The \: given \: equation \: is

 \tt \frac{x- 1 }{x - 2} +  \frac{x - 3}{x - 4 } =  3\frac{1}{3} (x \: ≠ \: 2, \: 4) \\

 \tt \: Taking \: L.C.M.

 \tt \frac{(x - 1)(x - 4) + (x - 3)(x - 2)}{(x - 2)(x - 4)} = 3  +  \frac{1}{3} \\

 \tt \implies \:  \:  \:  \:  \frac{x {}^{2}  - 4x - x + 4 + x {}^{2}  - 2x - 3x + 6}{ x{}^{2}  - 4x - 2x + 8}  =  \frac{10}{3} \\

 \tt \: Cross -  \: multiplying

 \tt \: 3(2x {}^{2}  - 10x  + 10) = 10(x {}^{2}  - 6x + 8)

 \implies \:  \:  \:  \:  \:  \:  \:  \tt \: 6x {}^{2}  - 30x + 30 = 10x {}^{2}  - 60x + 80

 \implies \:  \:  \:  \:  \tt \:  - 4 x{}^{2}  + 30x   - 50 = 0

 \tt \: Multiplying \: by \:  - 1,

 \tt \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  4x {}^{2}  - 30x + 50 = 0

 \tt \: Compairing \: with \: ax {}^{2}  + bx + c = 0,

 \tt \: We \: have

 \tt \: a = 4, \: b =  - 30, \: c = 50

 \tt \: So, \: D = b {}^{2}  - 4ac = ( - 30) {}^{2}  - 4(4)(50)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt = 900 - 800 = 100

 \tt \: Using \: Quadratic \: formula,

 \tt \: We \: have

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt x =  \frac{ - b \: ± \:   \sqrt{D} }{2a} \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \:  =  \frac{ - ( - 30) \:  \: ±\sqrt{100} }{8} \\

 \tt =  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{ 30 \: ± \:  10}{8} \\

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt x = \frac{30 - 10}{8} =  \frac{20}{8} \\

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \: x = 5 \:  \frac{5}{2} \\

 \tt \: Hence, \: The \: Solution \: of \: the \: given \: equation \:  \\  \tt \: are \:  \red{5} \: and \red{ \frac{5}{2}}

Similar questions