Math, asked by Anonymous, 4 months ago

solve for x.

 { \tt \ \:  |2 -  log_{ \frac{1}{2} }(x) |  = 3 +  log_{2}(x - 1)}

Answers

Answered by nehasharma08
1

Answer:

hope it is helpful

mark me as brainliest

Attachments:
Answered by Arceus02
6

If f(x)=|x|,

f(x) =  \begin{cases} - x \:  \:  \:  \: x < 0 \\  x \:  \:  \:  \:  \:  \: x \geqslant 0 \end{cases}

Given that,

 |2 -   \log_{ \frac{1}{2} }(x) |  = 3 +   \log_{2}(x - 1)

Since \log(b) is defined only for b>0,

From LHS,

x>0

and from RHS,

(x-1)>0

\longrightarrow x>1

Taking the intersection,

\longrightarrow \underline{x \in (1,\infty)}\quad \quad\dots(1)

Case 1:

  2 -    \log_{ \frac{1}{2} }(x)   < 0

 \longrightarrow  2  +     \log_{ 2 }(x)   < 0

 \longrightarrow  \log_{ 2 }(x)   <  - 2

 \longrightarrow x <  {2}^{ - 2}

 \longrightarrow x <  \dfrac{1}{4} \quad \quad\dots(2)

Then,

  -  \bigg \{2 -   \log_{ \frac{1}{2} }(x) \bigg \}  = 3 +   \log_{2}(x - 1)

 \longrightarrow  -  2  +   \log_{ \frac{1}{2} }(x)   = 3  + \log_{2}(x - 1)

 \longrightarrow  \log_{2}(x - 1) - \log_{ \frac{1}{2} }(x)   =  - 5

 \longrightarrow  \log_{2}(x - 1)  +  \log_{2}(x)   =  - 5

 \longrightarrow  \log_{2}x(x - 1)   =  - 5

 \longrightarrow {2}^{ - 5} = x(x - 1)

 \longrightarrow  \dfrac{1}{32}  =  {x}^{2}  - x

 \longrightarrow 32 {x}^{2}  - 32x - 1 = 0

On solving the quadratic equation, we get,

 \longrightarrow  x_{1} =  \dfrac{4 + 3 \sqrt{2} }{8}  \approx1.0303\quad \quad\dots(3)

 \longrightarrow  x_{2} =  \dfrac{4  -  3 \sqrt{2} }{8} \approx - 0.0303\quad \quad\dots(4)

Taking intersection of (2), (3) and (4), the only solution we get for case 1 is,

x_{2} =  \dfrac{4  -  3 \sqrt{2} }{8} \approx - 0.0303

Case 2:

  2 -    \log_{ \frac{1}{2} }(x)  \geqslant  0

 \longrightarrow  2  +     \log_{ 2 }(x)  \geqslant  0

 \longrightarrow  \log_{ 2 }(x)  \geqslant  - 2

 \longrightarrow x  \geqslant   {2}^{ - 2}

 \longrightarrow x  \geqslant  \dfrac{1}{4} \quad \quad\dots(5)

Then,

 2 -   \log_{ \frac{1}{2} }(x)   = 3 +   \log_{2}(x - 1)

  \longrightarrow 2  +    \log_{ 2 }(x)   = 3 +   \log_{2}(x - 1)

  \longrightarrow \log_{ 2 }(x)   -    \log_{2}(x - 1) = 1

  \longrightarrow \log_{ 2 } \bigg( \dfrac{x}{x - 1} \bigg)  = 1

  \longrightarrow 2 =  \dfrac{x}{x - 1}

  \longrightarrow  x_{3}  = 2\quad \quad\dots(6)

Taking the intersection of (5) and (6), the solution for case 2 is,

  \longrightarrow  x_{3} = 2

\\

But considering (1), we can eliminate x_2.

Hence the only solution of

 |2 -   \log_{ \frac{1}{2} }(x) |  = 3 +   \log_{2}(x - 1)

is,

 \longrightarrow \underline{ \underline{x = 2}}

Similar questions