Math, asked by itgoesfastermrbeast, 11 days ago

solve for x
 {x}^{2}  +  \frac{ {x}^{2} }{ {(x + 1)}^{2} }  = 3
find roots of X.. find zeroes of X​

Answers

Answered by mathdude500
6

Answer:

In real number system

\qquad\qquad\boxed{ \sf{ \: \bf \: x = \dfrac{ 1 \:  \pm \:  \sqrt{ 5} }{2} \: }}  \\  \\

Or

In complex number system,

\qquad\boxed{ \sf{ \: \bf \: x = \dfrac{ 1 \:  \pm \:  \sqrt{ 5} }{2}, \:  \: \dfrac{ - 3\:  \pm \: i \sqrt{ 3} }{2} \: }} \\  \\

Step-by-step explanation:

Given equation is

\sf \:  {x}^{2} + \dfrac{ {x}^{2} }{ {(x + 1)}^{2} }  = 3 \\  \\

We know,

\qquad\boxed{ \sf{ \: {a}^{2}+{b}^{2}  =  {(a  -  b)}^{2}  +  2ab \: }} \\  \\

So, using this result, we get

\sf \:  {\bigg(x - \dfrac{x}{x + 1}  \bigg) }^{2}  + 2 \times x \times \dfrac{x}{x + 1}  = 3 \\  \\

\sf \:  {\bigg( \dfrac{ {x}^{2}  + x - x}{x + 1}  \bigg) }^{2}  +  \dfrac{2 {x}^{2} }{x + 1}  = 3 \\  \\

\sf \:  {\bigg( \dfrac{ {x}^{2}}{x + 1}  \bigg) }^{2}  +  \dfrac{2 {x}^{2} }{x + 1}  = 3 \\  \\

Let assume that

\qquad\sf \: \dfrac{ {x}^{2} }{x + 1}  = y \\  \\

So, using this, the above expression can be rewritten as

\sf \:  {y}^{2} + 2y = 3 \\  \\

\sf \:  {y}^{2} + 2y  - 3= 0\\  \\

\sf \:  {y}^{2} + 3y - y  - 3= 0\\  \\

\sf \: y(y + 3) - 1(y + 3) = 0 \\  \\

\sf \: (y + 3)(y - 1) = 0 \\  \\

\bf\implies  \: y =  - 3 \:  \: or \:  \: y = 1 \\  \\

Now, Consider

\sf \: y = 1 \\  \\

\sf \: \dfrac{ {x}^{2} }{x + 1}  = 1 \\  \\

\sf \:  {x}^{2}  = x + 1 \\  \\

\sf \:  {x}^{2}  - x  - 1  = 0\\  \\

On comparing with ax^2 + bx + c = 0, we get

\qquad \:\boxed{\begin{aligned}& \qquad \:\sf \: a=1\qquad \: \\ \\& \qquad \:\sf \: b= - 1 \\ \\& \qquad \:\sf \: c= - 1\end{aligned}} \qquad  \\  \\

We know, Solution of quadratic equation is given by using quadratic formula, which is

\qquad\boxed{ \sf{ \:\sf \: x = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2} - 4ac} }{2a} \: }}  \\  \\

So, using quadratic formula, we get

\sf \: x = \dfrac{ - ( - 1) \:  \pm \:  \sqrt{ {( - 1)}^{2} - 4(1)( - 1) } }{2(1)}  \\  \\

\sf \: x = \dfrac{ 1 \:  \pm \:  \sqrt{ 1 + 4 } }{2}  \\  \\

\sf\implies \bf \: x = \dfrac{ 1 \:  \pm \:  \sqrt{ 5} }{2}  \\  \\

Now, Consider

\sf \: y =  - 3 \\  \\

\sf \: \dfrac{ {x}^{2} }{x + 1}  =  - 3 \\  \\

\sf \:  {x}^{2} =  - 3x - 3 \\  \\

\sf \:  {x}^{2} + 3x +  3 = 0 \\  \\

On comparing with ax^2 + bx + c = 0, we get

\qquad \:\boxed{\begin{aligned}& \qquad \:\sf \: a=1\qquad \: \\ \\& \qquad \:\sf \: b= 3\\ \\& \qquad \:\sf \: c=3\end{aligned}} \qquad  \\  \\

So, Solution of equation using quadratic formula is given by

\sf \: x = \dfrac{ - (3) \:  \pm \:  \sqrt{ {(3)}^{2} - 4(1)(3) } }{2(1)}  \\  \\

\sf \: x = \dfrac{ - 3\:  \pm \:  \sqrt{9 - 12 } }{2}  \\  \\

\sf \: x = \dfrac{ - 3\:  \pm \:  \sqrt{ - 3} }{2} \:  \cancel \in \: R  \\  \\

\bf\implies \: There \: is \: no \: solution \: in \: real \: numbers \\  \\

\rule{190pt}{2pt}

But for complex solutions

\sf \: x = \dfrac{ - 3\:  \pm \:  \sqrt{ - 3} }{2} \:  \\  \\

\sf\implies \sf \: x = \dfrac{ - 3\:  \pm \: i \sqrt{ 3} }{2} \:  \\  \\

Hence,

\sf\implies \bf \: x = \dfrac{ 1 \:  \pm \:  \sqrt{ 5} }{2}, \:  \: \dfrac{ - 3\:  \pm \: i \sqrt{ 3} }{2} \:  \\  \\

Similar questions