Math, asked by Chaitanya882, 6 months ago

Solve for x

x +  \frac{1}{x}  = 25 \frac{1}{25}

Answers

Answered by MaIeficent
9

Step-by-step explanation:

Given:-

\rm x + \dfrac{1}{x} = 25 \dfrac{1}{25}

Solution:-

\rm x + \dfrac{1}{x} = 25 \dfrac{1}{25}

\rm  \dashrightarrow x + \dfrac{1}{x} = 25  + \dfrac{1}{25}

\rm  \dashrightarrow  \dfrac{ {x}^{2}  + 1}{x} = 25 +  \dfrac{1}{25}

\rm  \dashrightarrow   {x}^{2} + 1 =  \bigg(25 +  \dfrac{1}{25}  \bigg)x

\rm  \dashrightarrow   {x}^{2} + 1  -  \bigg(25 +  \dfrac{1}{25}  \bigg)x = 0

\rm  \dashrightarrow   {x}^{2}   -  25x -  \dfrac{1}{25} x + 25 \times  \dfrac{1}{25}  = 0

\rm  \dashrightarrow  ( {x}^{2}   -  25x) - \bigg(\dfrac{x}{25} + 25 \times  \dfrac{1}{25}  \bigg) = 0

\rm  \dashrightarrow x ( x -  25) -\dfrac{1}{25} (x - 25 ) = 0

\rm  \dashrightarrow  ( x -  25)   \bigg(x - \dfrac{1}{25}  \bigg) = 0

\rm  \dashrightarrow  ( x -  25)   = 0 \:  \:  \: \:  \:  (or) \:  \:  \:  \:  x - \dfrac{1}{25}  = 0

 \boxed{   \leadsto\rm x = 25 \:  \: or \:  \:  \dfrac{1}{25}}

Similar questions