Math, asked by khushi15686, 4 days ago

Solve for x using factorization method
 {x}^{2}  + x  =  (n + 1)(n + 2)

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm \:  {x}^{2} + x - (n + 1)(n + 2) = 0 \\

can be rewritten as

\rm \:  {x}^{2} +  \red{(2 - 1)}x - (n + 1)(n + 2) = 0 \\

can be further rewritten as

\rm \:  {x}^{2} +  \red{(2 - 1 + n - n)}x - (n + 1)(n + 2) = 0 \\

can be re-arranged as

\rm \:  {x}^{2} +  \red{[(n + 2) - (n + 1)]}x - (n + 1)(n + 2) = 0 \\

\rm \:  {x}^{2} + (n + 2)x - (n + 1)x - (n + 1)(n + 2) = 0 \\

\rm \: x[x + (n + 2)] - (n + 1)[x + (n + 2)] = 0 \\

\rm \: [x + (n + 2)] [x- (n + 1)] = 0 \\

\rm \: x + n + 2 = 0 \:  \:  \: or \:  \:  \: x - (n + 1) = 0 \\

\rm\implies \:x =  - (n + 2) \:  \:  \: or \:  \:  \: x = n + 1 \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by nihasrajgone2005
0

Given quadratic equation is

\begin{gathered}\rm \: {x}^{2} + x - (n + 1)(n + 2) = 0 \\ \end{gathered}

can be rewritten as

\begin{gathered}\rm \: {x}^{2} + \red{(2 - 1)}x - (n + 1)(n + 2) = 0 \\ \end{gathered}

can be further rewritten as

\begin{gathered}\rm \: {x}^{2} + \red{(2 - 1 + n - n)}x - (n + 1)(n + 2) = 0 \\ \end{gathered}

can be re-arranged as

\begin{gathered}\rm \: {x}^{2} + \red{[(n + 2) - (n + 1)]}x - (n + 1)(n + 2) = 0 \\ \end{gathered} \\ \begin{gathered}\rm \: {x}^{2} + (n + 2)x - (n + 1)x - (n + 1)(n + 2) = 0 \\ \end{gathered} \\ \begin{gathered}\rm \: x[x + (n + 2)] - (n + 1)[x + (n + 2)] = 0 \\ \end{gathered}  \\ \begin{gathered}\rm \: x + n + 2 = 0 \: \: \: or \: \: \: x - (n + 1) = 0 \\ \end{gathered}  \\ \begin{gathered}\rm\implies \:x = - (n + 2) \: \: \: or \: \: \: x = n + 1 \\ \end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

  • Nature of roots :-

  • Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac
Similar questions