Math, asked by bhumikajindal770, 5 days ago

Solve for x using method of factorization

Attachments:

Answers

Answered by mathdude500
5

Given Question :-

Solve for x using method of Factorization :-

\rm \: x = \dfrac{1}{2 - \dfrac{1}{2 - \dfrac{1}{2 - x} } }, \:  \: x \:  \ne \: 2 \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \: x = \dfrac{1}{2 - \dfrac{1}{2 - \dfrac{1}{2 - x} } }, \:  \: x \:  \ne \: 2 \\

can be further rewritten as

\rm \: x = \dfrac{1}{2 - \dfrac{1}{ \dfrac{2(2 - x) - 1}{2 - x} } }, \:  \: x \:  \ne \: 2 \\

\rm \: x = \dfrac{1}{2 - \dfrac{1}{ \dfrac{4 - 2x - 1}{2 - x} } }, \:  \: x \:  \ne \: 2 \\

\rm \: x = \dfrac{1}{2 - \dfrac{1}{ \dfrac{3 - 2x}{2 - x} } }, \:  \: x \:  \ne \: 2 \\

\rm \: x = \dfrac{1}{2 - \dfrac{2 - x}{3 - 2x} }, \:  \: x \:  \ne \: 2 \\

\rm \: x = \dfrac{1}{\dfrac{2(3 - 2x) - 2  +  x}{3 - 2x} }, \:  \: x \:  \ne \: 2 \\

\rm \: x = \dfrac{1}{\dfrac{6 - 4x - 2 +  x}{3 - 2x} }, \:  \: x \:  \ne \: 2 \\

\rm \: x = \dfrac{1}{\dfrac{4 - 3x}{3 - 2x} }, \:  \: x \:  \ne \: 2 \\

\rm \: x = \dfrac{3 - 2x}{4 - 3x}, \:  \: x \:  \ne \: 2 \\

\rm \: x(4 - 3x) = 3 - 2x \\

\rm \: 4x - 3 {x}^{2}  = 3 - 2x \\

\rm \:  {3x}^{2} - 6x + 3 = 0 \\

\rm \: 3( {x}^{2} - 2x + 1) = 0 \\

\rm \: {x}^{2} - 2x + 1 = 0 \\

\rm \:  {(x - 1)}^{2}  = 0 \\

\rm\implies \:x = 1, \: 1 \\

\rule{190pt}{2pt}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions