Math, asked by kunal2330, 1 month ago

solve for x, using quadratic formula p²x²-p²x+q²x-q²=0​

Answers

Answered by pranalithool93
0

Step-by-step explanation:

have a great Day you like my answer ✨✨

Attachments:
Answered by mathdude500
14

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\: {p}^{2} {x}^{2} -  {p}^{2}x +  {q}^{2}x -  {q}^{2} = 0

can be rewritten as

\rm :\longmapsto\: {p}^{2} {x}^{2} + ( - {p}^{2}+  {q}^{2})x -  {q}^{2} = 0

On comparing with ax² + bx + c = 0, we get

\boxed{ \tt{ \: a =  {p}^{2}}}

\boxed{ \tt{ \: b =  {q}^{2}  -  {p}^{2}}}

\boxed{ \tt{ \: c =   - {q}^{2}}}

Now,

Discriminant, D of quadratic equation ax² + bx + c = 0 is given by

 \red{\rm :\longmapsto\:D =  {b}^{2} - 4ac}

On Substituting the values of a, b and c, we get

\rm \:  =  \: {( {q}^{2}  -  {p}^{2}) }^{2} - 4 \times  {p}^{2} \times ( -  {q}^{2})

\rm \:  =  \: {( {q}^{2}  -  {p}^{2}) }^{2}  + 4 {q}^{2} {p}^{2}

We know,

\boxed{ \tt{ \:  {(x - y)}^{2} + 4xy =  {(x + y)}^{2} \: }}

So, using this, we get

\rm \:  =  \: {( {q}^{2} + {p}^{2} )}^{2}

 \purple{\bf\implies \: \boxed{ \tt{ \:D \:  =  \: {( {q}^{2} + {p}^{2} )}^{2}}}}

Now, we know, Quadratic formula is

\rm :\longmapsto\:\boxed{ \tt{ \: x = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a} \:  \: }}

or

\rm :\longmapsto\:\boxed{ \tt{ \: x = \dfrac{ - b \:  \pm \:  \sqrt{ D}}{2a} \:  \: }}

So, on substituting the values, we get

\rm :\longmapsto\:x = \dfrac{ - ( {q}^{2} -  {p}^{2}) \:  \pm \:  \sqrt{ {( {q}^{2} +  {p}^{2})}^{2} }   }{2 {p}^{2} }

\rm :\longmapsto\:x = \dfrac{ {p}^{2}  -  {q}^{2} \:  \pm \: ( {q}^{2} +  {p}^{2})}{ {2p}^{2} }

\rm :\longmapsto\:x = \dfrac{ {p}^{2}  -  {q}^{2}  +  ( {q}^{2} +  {p}^{2})}{ {2p}^{2} } \:  \: or \:  \: \dfrac{ {p}^{2}  -  {q}^{2} -   ( {q}^{2} +  {p}^{2})}{ {2p}^{2} }

\rm :\longmapsto\:x = \dfrac{ {p}^{2}  -  {q}^{2}+{q}^{2} +{p}^{2}}{ {2p}^{2} } \:  \: or \:  \: \dfrac{ {p}^{2} -{q}^{2} -{q}^{2} -   {p}^{2}}{ {2p}^{2} }

\rm :\longmapsto\:x = \dfrac{ 2{p}^{2}}{ {2p}^{2} } \:  \: or \:  \: \dfrac{ -2{q}^{2} }{ {2p}^{2} }

\rm :\longmapsto\:x = 1 \:  \: or \:  \: \dfrac{ -{q}^{2} }{ {p}^{2} }

\bf\implies \:\boxed{ \tt{ \: x = 1 \:  \: or \:  \: x =  -  \:  \frac{ {q}^{2} }{ {p}^{2} }  \:  \: }}

More to know :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions