Math, asked by harshita9752, 3 months ago

solve for x, using quadratic formula: x-2rootx-6=0​

Answers

Answered by sumanhalder08
0

see the attached document

Attachments:
Answered by mathdude500
4

\large\underline{\sf{Solution-}}

The given equation is

\rm :\longmapsto\:x - 2 \sqrt{x} - 6 = 0

can be rewritten as

\rm :\longmapsto\: {( \sqrt{x} )}^{2}  - 2 \sqrt{x} - 6 = 0

Now,

\rm :\longmapsto\:Its \: a \: quadratic \: in \:  \sqrt{x}

We know,

Quadratic formula

\rm :\longmapsto\:If \: equation \: is \:  {ax}^{2} + bx + c = 0 \: then \:

\rm :\longmapsto\:x = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}

Here,

\red{\rm :\longmapsto\:a = 1} \\ \red{\rm :\longmapsto\:b =  - 2} \\ \red{\rm :\longmapsto\:c =  - 6} \\ \red{\rm :\longmapsto\:x =  \sqrt{x}}

So, on substituting the values we get

\rm :\longmapsto\: \sqrt{x}  = \dfrac{ - ( - 2) \:  \pm \:  \sqrt{ {( - 2)}^{2}  - 4(1)( - 6)} }{2 \times 1}

\rm :\longmapsto\: \sqrt{x}  = \dfrac{2 \:  \pm \:  \sqrt{4 + 24} }{2}

\rm :\longmapsto\: \sqrt{x}  = \dfrac{2 \:  \pm \:  \sqrt{28} }{2}

\rm :\longmapsto\: \sqrt{x}  = \dfrac{2 \:  \pm \: 2 \sqrt{7} }{2}

\rm :\longmapsto\: \sqrt{x}  = \dfrac{2(1 \:  \pm \:  \sqrt{7} )}{2}

\rm :\longmapsto\: \sqrt{x} = 1 +  \sqrt{7}  \:  \: or \:  \: 1 -  \sqrt{7}

On squaring both sides, we get

\rm :\longmapsto\:x = 1 + 7 + 2 \sqrt{7}  \:  \:  \: or \:  \:  \: 1 + 7 - 2 \sqrt{7}

\rm :\longmapsto\:x = 8 + 2 \sqrt{7}  \:  \:  \: or \:  \:  \: 8 - 2 \sqrt{7}

Aliter method :-

Given equation is

\rm :\longmapsto\:x - 2 \sqrt{x} - 6 = 0

\rm :\longmapsto\:x  - 6 = 2 \sqrt{x}

On squaring both sides, we get

\rm :\longmapsto\:(x  - 6)^{2}  = (2 \sqrt{x})^{2}

\rm :\longmapsto\: {x}^{2} + 36 - 12x = 4x

\rm :\longmapsto\: {x}^{2} + 36 - 12x -  4x  = 0

\rm :\longmapsto\: {x}^{2} + 36 - 16x = 0

\rm :\longmapsto\: {x}^{2} - 16x  + 36= 0

We know,

Quadratic Formula

\rm :\longmapsto\:If \: equation \: is \:  {ax}^{2} + bx + c = 0 \: then \:

\rm :\longmapsto\:x = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}

Here,

\red{\rm :\longmapsto\:a = 1} \\ \red{\rm :\longmapsto\:b =  - 16} \\ \red{\rm :\longmapsto\:c =  36} \\ \red{\rm :\longmapsto\:x =  {x}}

So, on substituting the values, we get

\rm :\longmapsto\:x = \dfrac{ - ( - 16) \:  \pm \:  \sqrt{ {( - 16)}^{2}  - 4(1)(36)} }{2 \times 1}

\rm :\longmapsto\:x = \dfrac{16 \:  \pm \:  \sqrt{256  - 144} }{2}

\rm :\longmapsto\:x = \dfrac{16 \:  \pm \:  \sqrt{112} }{2}

\rm :\longmapsto\:x = \dfrac{16 \:  \pm \:  \sqrt{(4)(4)(7)} }{2}

\rm :\longmapsto\:x = \dfrac{16 \:  \pm \:  4\sqrt{7} }{2}

\rm :\longmapsto\:x = \dfrac{2 \: (8 \:  \pm \:  2\sqrt{7} )}{2}

\rm :\longmapsto\:x = 8  \:  \pm \: 2 \sqrt{7}

\rm :\longmapsto\:x = 8 + 2 \sqrt{7}  \:  \:  \: or \:  \:  \: 8 - 2 \sqrt{7}

Similar questions