Social Sciences, asked by gkedarkumar2324, 11 months ago

Solve for x; where 0° ≤ x ≤ 90°

sin² x + cos² 30 = 5/4

Answers

Answered by harendrachoubay
18

The value of ∠x = 45°

Explanation:

We have,

 \sin^2 x+\cos^230 =\dfrac{5}{4} , 0° ≤ x ≤ 90°

To find, the value of ∠x = ?

\sin^2 x+\cos^230 =\dfrac{5}{4}

⇒  \sin^2 x+(\dfrac{\sqrt{3}}{2})^2=\dfrac{5}{4}

Using the trigonometric identity,

\cos 30=\dfrac{\sqrt{3}}{2}

⇒  \sin^2 x+\dfrac{3}{4} =\dfrac{5}{4}

⇒  \sin^2 x=\dfrac{5}{4}-\dfrac{3}{4}

⇒  \sin^2 x=\dfrac{5-3}{4}=\dfrac{2}{4}

⇒  \sin^2 x=\dfrac{1}{2}

⇒  \sin x=(+-)\sqrt{\dfrac{1}{2}}

⇒  \sin x=\dfrac{1}{\sqrt{2}}

( Since, first quadrant only positive values)

⇒  \sin x=\sin 45

∴ ∠x = 45°

Thus, the value of ∠x = 45°  

Answered by erinasahu2007
0

Answer:

here is your answer.

hope it will help you,

Thank you,

have a nice day!

Attachments:
Similar questions