Math, asked by chandeshwar631, 1 year ago

solve for x. write the smaller solution first, and the largest solution second 2x^2-24x+54=0​

Attachments:

Answers

Answered by BrainlyConqueror0901
8

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Smaller\:x=3}}}

\green{\tt{\therefore{Larger\:x=9}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {2x}^{2}  - 24x + 54 = 0 \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  smaller \: x =  \\  \\ \tt:  \implies  larger \: x =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {2x}^{2}  - 24x + 54 = 0 \\  \\ \tt:  \implies  {2x}^{2}   - 18x - 6x + 54 = 0 \\  \\ \tt:  \implies 2x(x - 9) - 6(x - 9) = 0 \\  \\ \tt:  \implies (2x - 6)(x - 9) = 0 \\  \\ \tt:  \implies 2x - 6 = 0 \\  \\ \tt:  \implies 2x = 6 \\  \\  \green{\tt:  \implies x = 3} \\  \\  \tt:  \implies x - 9 = 0 \\  \\  \green{\tt:  \implies x = 9}  \\  \\   \green{\tt \therefore Smaller \: value = 3} \\  \\ \green{\tt \therefore Larger \: value = 9}

Answered by ғɪɴɴвαłσℜ
6

Aɴꜱᴡᴇʀ

☞ Smaller x = 3

☞ Larger x = 9

_________________

Gɪᴠᴇɴ

 \sf{w} \tt{e \: have \: the \: equation}  \: \: \red{ 2 {x}^{2}  - 24x + 54 = 0}

_________________

ᴛᴏ ꜰɪɴᴅ

➤ The smaller x and the larger x

_________________

Sᴛᴇᴘꜱ

✪ First to find these values of X we first have to factories it.

So,

 \large \dashrightarrow \tt2 {x}^{2}  - 24x + 54  = 0\\  \\   \large\tt\dashrightarrow2 {x}^{2}  - 18x - 6x + 54 = 0 \\  \\   \large\tt \dashrightarrow{2x(x - 9)}  -  6(x - 9) = 0 \\  \\   \large\tt \dashrightarrow \orange{(2x - 6)(x - 9) = 0} \\  \\

So now lets equate each one separately with zero,

 \large\tt \leadsto2x - 6 = 0 \\  \\    \large\tt \leadsto x =  \cancel \frac{ 6}{2}  \\  \\  \tt \large  \pink{\leadsto{}x =3 }

Now the other one,

 \large \tt \longrightarrow{}x - 9 = 0 \\  \\   \large\tt  \pink{\longrightarrow{}x = 9}

_____________________________________

Similar questions