Math, asked by khadeeja8280, 7 months ago

Solve for x , (x+1)/(x-1) + (x-1)/(x+1) = 5/6 , x ≠1 , x ≠-1

Answers

Answered by jasritha
2

Answer:

Hope this will help you..........

Attachments:
Answered by Yugant1913
10

Correct question

 \frac{x + 1}{x - 1}  -  \frac{x - 1}{x + 1}  =  \frac{5}{6} x  ≠1, - 1.

Step-by-step explanation:

 \frac{x + 1}{x - 1}  -  \frac{x - 1}{x + 1}  =  \frac{5}{6}

⟹ \frac{( {x + 1) }^{2} -  {(x - 1)}^{2}  }{(x - 1)(x + 1)}  =  \frac{5}{6}

⟹  \frac{ {x}^{2} + 1 + 2x - ( {x}^{2}  + 1 - 2x) }{ {x}^{2}  - 1}  =  \frac{5}{6}

⟹ \frac{ {x}^{2}  + 1 + 2x -  {x}^{2}  - 1 + 2x}{ {x}^{2} - 1 }  =  \frac{5}{6}

⟹ \frac{4x}{ {x}^{2}  - 1}  =  \frac{5}{6}

⟹ {5x}^{2}  - 5 = 24x

⟹ {5x}^{2}  - 24x - 5 = 0

⟹5 {x}^{2}  - 25x + x - 5 = 0

⟹5x(x - 5) + 1(x - 5) = 0

⟹(x - 5)(5x + 1) = 0

⟹x - 5 = 0 \:  \: or \:  \: 5x + 1 = 0

∴ \:  \:  \:  \:  \:  \:  \: x = 5 \:  \: or \:  \: x =  \frac{ - 1}{5}

Thus, roots of equation are 5 and - 1/5

Similar questions