solve for x [x+1/x+2]^2 = x+2/x+4
Answers
Answered by
0
Step-by-step explanation:
1/x+1 +2/x+2 = 4/x+4
(1(x+2)+2(x+1))/(x+1)(x+2) = 4/x+4
(x+2+2x+2)(x+4)=4(x+1)(x+2)
(3x+4)(x+4)=4(x^2+2x+x+2)
3x^2+12x+4x+16=4(x^2+3x+2)
3x^2+16x+16=4x^2+12x+8
x^2-4x-8=0
comparing with ax^2+bx+c=0
a=1 b= -4 c= -8
D=b^2-4ac=(-4)^2-4*1*(-8)
=16+32
=48>0
So x^2-4x-8=0 has two distinct real roots
they are (-b+root(b^2-4ac))/2a , (-b-root(b^2-4ac))/2a
=(-(-4)+root(48))/2(1), (-(-4)-root(48))/2(1))
=(4+root(16*3))/2 , (4-root(16*3))/2
=(4+4root3)/2, (4-4root3)/2
=2+2root3, 2-2root3
Similar questions