Math, asked by vaishiniMansisi, 1 year ago

Solve for x : x^2 + 6x - (a^2 + 2a - 8 ) = 0

Answers

Answered by presentmoment
101

\bold{x=(a-2) \text { or }(-4-a)} is the value of \bold{x^{2}+6 x-\left(a^{2}+2 a-8\right)=0.}

Given:

x^{2}+6 x-\left(a^{2}+2 a-8\right)=0

To find:

Value of x=?

Solution:

To find the value of “a”, we first find the roots of the equation, for that  

x^{2}+6 x-\left(a^{2}+2 a-8\right)=0

First solve the equation a^{2}+2 a-8

Using separation method, we get the value of the equation

a^{2}+2 a-8=(a-2)(a+4)

Putting the value of the equationa^{2}+2 a-8 as (a-2)(a+4) in

x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}

Therefore putting the values we get  

x=\frac{-6 \pm \sqrt{6^{2}-4.1 \cdot(a-2)(a+4)}}{2}

After Solving the equation by putting the value of c, we get the values or roots of x as

x=(a-2) \text { or }(-4-a)

Therefore, the answer to the equation is that the value of “a” can be \bold{x=(a-2) \text { or }(-4-a).}

Answered by mysticd
127

Answer:

x = -(a+4) Or x = (a-2)

Step-by-step explanation:

Given quadratic equation:

+6x-(+2a-8)=0

=> +6x-(+4a-2a-8)=0

=> +6x-[a(a+4)-2(a+4)]=0

=> +6x-(a+4)(a-2)=0

Splitting the middle term,we get

=>+(a+4)x-(a-2)x-(a+4)(a-2)=0

=> x[x+(a+4)]-(a-2)[x+(a+4)]=0

=> [x+(a+4)][x-(a-2)]=0

=> x+(a+4)=0 Or x-(a-2)=0

=> x = -(a+4) Or x = (a-2)

Therefore,

x = -(a+4) Or x = (a-2)

•••♪

Similar questions