Math, asked by kuvambhutani1612, 2 months ago

Solve for x:
|x+2-x^2| + |x+2| = x^2

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\: |x + 2 -  {x}^{2} |  +  |x + 2|  =  {x}^{2}

can be rewritten as

\rm :\longmapsto\: | -  ({x}^{2}  - x - 2)|  +  |x + 2|  =  {x}^{2}

\rm :\longmapsto\: | -  ({x}^{2}  - 2x + x - 2)|  +  |x + 2|  =  {x}^{2}

\rm :\longmapsto\: | - (x(x  - 2) + 1( x - 2))|  +  |x + 2|  =  {x}^{2}

\rm :\longmapsto\: | - (x + 1)(x - 2)| +  |x + 2| =  {x}^{2}

\rm :\longmapsto\: | (x + 1)(2 - x)| +  |x + 2| =  {x}^{2}

So, breaking points are

\rm :\longmapsto\: - 2, \:  - 1, \: 2

We know,

Definition of Modulus function is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x|  = \begin{cases} &\sf{ - x \: when \: x < 0} \\ &\sf{ \:  \:  \: x \: when \: x \:  \geqslant 0 \: } \end{cases}\end{gathered}\end{gathered}

So,

We take out the first case,

\rm :\longmapsto\:When \: x \:   \leqslant   - 2

So,

\rm :\longmapsto\: | (x + 1)(2 - x)| +  |x + 2| =  {x}^{2}

reduces to

\rm :\longmapsto\:  - (x + 1)(2 - x) - (x + 2)=  {x}^{2}

\rm :\longmapsto\:  (x + 1)(x - 2) - (x + 2)=  {x}^{2}

\rm :\longmapsto\: {x}^{2} - x - 2 - x - 2 =  {x}^{2}

\rm :\longmapsto\:  - 2x - 4 =  0

\rm :\longmapsto\:  - 2x =  4

\bf\implies \:x =  - 2 -  -  - (1)

Now, Case :- 2

\rm :\longmapsto\:When - 2 < x <  - 1

So,

\rm :\longmapsto\: | (x + 1)(2 - x)| +  |x + 2| =  {x}^{2}

reduces to

\rm :\longmapsto\:  - (x + 1)(2 - x)  + (x + 2)=  {x}^{2}

\rm :\longmapsto\:  (x + 1)(x - 2) + (x + 2)=  {x}^{2}

\rm :\longmapsto\: {x}^{2} - x - 2 + x + 2 =  {x}^{2}

\rm :\longmapsto\:0 = 0

Hence,

Solution is

\bf\implies \:x \:  \in \: ( - 2, - 1) -  - (2)

Now, Case :- 3

\rm :\longmapsto\:When - 1 \leqslant  x <  2

So,

\rm :\longmapsto\: | (x + 1)(2 - x)| +  |x + 2| =  {x}^{2}

reduces to

\rm :\longmapsto\: (x + 1)(2 - x) +  x + 2=  {x}^{2}

\rm :\longmapsto\: x + 2 -  {x}^{2}  +  x + 2=  {x}^{2}

\rm :\longmapsto\: 2x + 4 -  2{x}^{2}  =  0

\rm :\longmapsto\: {x}^{2} - x - 2 = 0

\rm :\longmapsto\: {x}^{2} - 2x + x - 2 = 0

\rm :\longmapsto\: x(x - 2) + 1(x - 2) = 0

\rm :\longmapsto\: (x - 2)(x + 1) = 0

\rm :\longmapsto\:x =  2 \:  \: or \:  \: x =  - 1

\bf\implies \:x =  - 1 -  -  - (3)

Now, Case :- 4

\rm :\longmapsto\:When \: x \:  \geqslant  \: 2

So,

\rm :\longmapsto\: | (x + 1)(2 - x)| +  |x + 2| =  {x}^{2}

reduces to

\rm :\longmapsto\:  - (x + 1)(2 - x)  + (x + 2)=  {x}^{2}

\rm :\longmapsto\:  (x + 1)(x - 2) + (x + 2)=  {x}^{2}

\rm :\longmapsto\: {x}^{2} - x - 2 + x + 2 =  {x}^{2}

\rm :\longmapsto\:0 = 0

Hence, Solution is

\bf\implies \:x \geqslant 2 -  -  - (4)

So, on combining equation (1), (2), (3) and (4), we get

\bf\implies \:x \:  \in \: [ - 2, \:   - 1] \:  \cup \: [2, \:  \infty )

Similar questions