Solve for x:
(x-4) (x+4) = 54 + (x-5) (x-10)
Answers
Answered by
7
Given (x - 4)(x + 4) = 54 + (x - 5)(x - 10).
LHS:
(x - 4)(x + 4).
We know that (a - b)(a + b) = a^2 - b^2.
Then (x - 4)(x + 4) = x^2 - 16. ------------- (1)
RHS:
54 + (x - 5)(x - 10)
= 54 + (x^2 - 15x + 50)
= 54 + x^2 - 15x + 50
= x^2 - 15x + 104 --------- (2)
Now From (1) and (2), we get
x^2 - 16 = (x^2 - 15x + 104)
x^2 = x^2 - 15x + 104 + 16
x^2 = x^2 - 15x + 120
15x = 120
x = 120/15
x = 8.
The value of x = 8.
Hope this helps!
LHS:
(x - 4)(x + 4).
We know that (a - b)(a + b) = a^2 - b^2.
Then (x - 4)(x + 4) = x^2 - 16. ------------- (1)
RHS:
54 + (x - 5)(x - 10)
= 54 + (x^2 - 15x + 50)
= 54 + x^2 - 15x + 50
= x^2 - 15x + 104 --------- (2)
Now From (1) and (2), we get
x^2 - 16 = (x^2 - 15x + 104)
x^2 = x^2 - 15x + 104 + 16
x^2 = x^2 - 15x + 120
15x = 120
x = 120/15
x = 8.
The value of x = 8.
Hope this helps!
Alice123456789:
at least don't do copy past here in maths ques
Answered by
1
THE VALUE OF x IS 8
solution:
(x-4) (x+4) = 54 + (x-5) (x-10)
→x^2-16=54+(x-5)(x-10)....[(a-b)(a+b)=(a^2-b^2)]
→x^2-16=54+x^2-15x+50
→x^2-16=x^2-15+104
→x^2-16=x^2-15x+120
→120=15x
→x=120/15
→x=8
solution:
(x-4) (x+4) = 54 + (x-5) (x-10)
→x^2-16=54+(x-5)(x-10)....[(a-b)(a+b)=(a^2-b^2)]
→x^2-16=54+x^2-15x+50
→x^2-16=x^2-15+104
→x^2-16=x^2-15x+120
→120=15x
→x=120/15
→x=8
Similar questions