Solve for x.
(x-7)(x-3)(x+5)(x+1)= 1680
❌❌NO SPAMMING❌❌
Answers
Step-by-step explanation:
Given Equation is (x - 7)(x - 3)(x + 5)(x + 1) = 1680
⇒ (x² - 10x + 21)(x + 5)(x + 1) = 1680
⇒ (x³ - 5x² - 29x + 105)(x + 1) = 1680
⇒ x⁴ - 4x³ - 34x² + 76x + 105 = 1680
⇒ x⁴ - 4x³ - 34x² + 76x - 1575 = 0
⇒ x⁴ - 11x³ + 43x² - 225x + 7x³ - 77x² + 301x - 1575 = 0
⇒ x(x³ - 11x² + 43x - 225) + 7(x³ - 11x² + 43x - 225) = 0
⇒ (x + 7)(x³ - 11x² + 43x - 225) = 0
⇒ (x + 7)[x³ - 2x² + 25x - 9x² + 18x - 225] = 0
⇒ (x + 7)[x(x² - 2x + 25) - 9(x² - 2x + 25)] = 0
⇒ (x + 7)(x - 9)(x² - 2x + 25) = 0
(i)
x + 7 = 0
x = -7
(ii)
x + 9 = 0
x = -9
(iii)
x² - 2x + 25 = 0
∴ x = (-b ± √b² - 4ac)/2a
= (2 ± √96 i)/2
= 1 ± 2√6 i
∴ x = -7, 9, 1 ± 2√6 i
Hope it helps!
Given Equation is (x - 7)(x - 3)(x + 5)(x + 1) = 1680
(x^2 - 10x + 21)(x + 5)(x + 1) = 1680
(x^3 - 5x^2 - 29x + 105)(x + 1) = 1680
x^4 - 4x^3 - 34x^2 + 76x + 105 = 1680
x^4 - 4x^3 - 34x^2 + 76x - 1575 = 0
x^4 - 11x^3 + 43x^2 - 225x + 7x^3 - 77x^2 + 301x - 1575 = 0
x(x^3 - 11x^2 + 43x - 225) + 7(x^3 - 11x^2 + 43x - 225) = 0
(x + 7)(x^3 - 11x^2 + 43x - 225) = 0
(x + 7)[x^3 - 2x^2 + 25x - 9x^2 + 18x - 225] = 0
(x + 7)[x(x^2 - 2x + 25) - 9(x^2 - 2x + 25)] = 0
(x + 7)(x - 9)(x^2 - 2x + 25) = 0
(1)
x + 7 = 0
x = -7
(2)
x + 9 = 0
x = -9
(iii)
(x^2 - 2x + 25) = 0
x = (-b ± √b² - 4ac)/2a
= (2 ± √96 i)/2
= 1 ± 2√6 i
So,solutions are -7,-9, 1 ± 2√6 i
Hope it will helps you