Solve for x (x lies between 0° and 90°
tan²x + 3 = 3 sec x
Answers
Answered by
2
Solution:
To Determine:- The values of x.
Given Equation :-
→ tan²(x) + 3 = 3 sec(x) [0° ≤ x ≤ 90°]
We know that :-
→ sec²(x) - tan²(x) = 1
→ tan²(x) = sec²(x) - 1
Now, the equation becomes :-
→ sec²(x) - 1 + 3 = 3 sec(x)
→ sec²(x) - 3 sec(x) + 2 = 0
By splitting the middle term, we get :-
→ sec²(x) - sec(x) - 2 sec(x) + 2 = 0
→ sec(x)[sec(x) - 1] - 2[sec(x) - 1] = 0
→ [sec(x) - 2] × [sec(x) - 1] = 0
→ sec(x) = 1, 2
But sec 0° = 1 and sec 60° = 2
Therefore :-
→ x = 0°, 60° (Answer)
Learn More:
1. Relationship between sides and T-Ratios.
- sin θ = Height/Hypotenuse
- cos θ = Base/Hypotenuse
- tan θ = Height/Base
- cot θ = Base/Height
- sec θ = Hypotenuse/Base
- cosec θ = Hypotenuse/Height
2. Square formulae.
- sin²θ + cos²θ = 1
- cosec²θ - cot²θ = 1
- sec²θ - tan²θ = 1
3. Reciprocal Relationship.
- sin θ = 1/cosec θ
- cos θ = 1/sec θ
- tan θ = 1/cot θ
4. Cofunction identities.
- sin(90° - θ) = cos θ
- cos(90° - θ) = sin θ
- cosec(90° - θ) = sec θ
- sec(90° - θ) = cosec θ
- tan(90° - θ) = cot θ
- cot(90° - θ) = tan θ
5. Even odd identities.
- sin -θ = -sin θ
- cos -θ = cos θ
- tan -θ = -tan θ
Similar questions