Math, asked by bhumishah265, 9 months ago

solve for x : x/x-1 + x-1/x =4; x is not equal to 0 and 1

Answers

Answered by abhi569
3

Step-by-step explanation:

 \small{  =  >  \frac{x}{x -1 }  +  \frac{x - 1}{x}   = 4 } \\  \\  \small{ =  >  \frac{{x}^{2}  + (x - 1) ^{2} }{x(x - 1)} } = 4

= > x² + (x² + 1² - 2x) = 4x(x - 1)

= > x² + x² + 1 - 2x = 4x² - 4x

= > 2x² + 1 - 2x = 4x² - 4x

= > 2x² - 4x² + 1 - 2x + 4x = 0

= > - 2x² + 1 + 2x = 0

= > 2x² - 1 - 2x = 0

= > 2x² - 2x - 1 = 0

Using quadratic formula:

 \small{ =  > x =  \frac{ - (-2) \pm \sqrt{2 {}^{2}  - 4( - 1)(2)} }{2(2)} } \\  \\  \small{  =  >x =  \frac{ 2 \pm \sqrt{4 + 8} }{4}   }\\  \\  \small{  =  >x =  \frac{ 2 \pm \sqrt{12} }{4}   }\\  \\  \small{  =  >x =  \frac{ 2 \pm \sqrt{4 \times 3} }{4}  = \frac{ 2 \pm2 \sqrt{3} }{4}   } \\  \\  \small{  =  >x =  \frac{ 1\pm \sqrt{3} }{2}   }

Similar questions