Math, asked by inderjeetkaur81, 21 hours ago

solve for x:- [x²-9] / [x+3] = 4/7​

Attachments:

Answers

Answered by anindyaadhikari13
4

\textsf{\large{\underline{Solution}:}}

We have to solve the given equation for x ≠ -3.

Given that:

 \rm: \longmapsto \dfrac{ {x}^{2}  - 9}{x + 3}  =  \dfrac{4}{7}

We know that:

 \rm: \longmapsto {x}^{2} -  {y}^{2}  = (x + y)(x - y)

Therefore, we get:

 \rm: \longmapsto \dfrac{ {x}^{2}  -  {3}^{2} }{x + 3}  =  \dfrac{4}{7}

 \rm: \longmapsto \dfrac{(x + 3)(x - 3)}{(x + 3)}  =  \dfrac{4}{7}

We can cancel out (x + 3) as x ≠ 3. We get:

 \rm: \longmapsto x - 3  =  \dfrac{4}{7}

Adding 3 to both sides, we get:

 \rm: \longmapsto x  = 3  \dfrac{4}{7}

Therefore:

 \rm: \longmapsto x  = 3  \dfrac{4}{7}  \:  \:  \:  (Answer)

\textsf{\large{\underline{Verification}:}}

Put x = 25/7 in the expression, we get:

 \rm =  \dfrac{ \bigg(  \dfrac{25}{7} \bigg)^{2}  - {9}^{2} }{ \dfrac{25}{7} + 3 }

 \rm =  \dfrac{ \bigg(  \dfrac{25}{7}  + 3\bigg) \cdot \bigg(  \dfrac{25}{7} - 3 \bigg)}{ \bigg( \dfrac{25}{7} + 3  \bigg)}

 \rm =  \dfrac{25}{7} - 3

 \rm =  \dfrac{25 - 21}{7}

 \rm =  \dfrac{4}{7}

★ Hence, our answer is correct (Verified)


anindyaadhikari13: Thanks for the brainliest :)
Similar questions