Math, asked by goodygal5621, 11 months ago

Solve for y: 4y2 4qy-(p2-q2)=0

Answers

Answered by Zaransha
2
Assuming you're talking about

4 {y}^{2}  + 4qy + ( {p}^{2}  -  {q}^{2} )

Here, a = 4, b = 4q and c = (p^2-q^2)


Applying the quadratic formula for roots,

 \frac{ - b ±  \sqrt{ {b}^{2} - 4ac } }{2a}  \\


Substitute the values,

 \frac{ - 4q± \sqrt{ {(4q)}^{2} - 4(4)( {p}^{2} -  {q}^{2})   } }{2(4)} \\  \\  =  \frac{ - 4q± \sqrt{16 {q}^{2}  - 16 {p }^{2}  + 16 {q}^{2} } }{8}   \\  \\  =  \frac{ - 4q± 4p\sqrt{ -  1 } }{8}  \\  \\  =  \frac{ - 4q±4pi}{8}  \\  \\  =  \frac{ - q±pi}{2}

Therefore, the two values for y are these.
Answered by stalwartajk
0

Answer:

There are two values for y:

y=\frac{-q^2 + p i}{2}; and

y=\frac{-q^2 - p i}{2};

Explanation:

The given equation :

4 y^2+4 q y+\left(p^2-q^2\right) = 0

we can use the quadratic formula in order to find y:

So, In the given equation,

a = 4; b = 4q; and c= \left(p^2-q^2\right)

So, applying the quadratic formula, we get:

y = \frac{-b^{2} \pm \sqrt{b^2-4 a c}}{2 a}

\begin{aligned}&y= \frac{-4 q ^{2} \pm \sqrt{(4 q)^2-4(4)\left(p^2-q^2\right)}}{2(4)} \\&y =\frac{-4 q ^{2} \pm \sqrt{16 q^2-16 p^2+16 q^2}}{8} \\& y=\frac{-4 q^{2} \pm 4 p \sqrt{-1}}{8} \\& y=\frac{-4 q^{2} \pm 4 p i}{8} \\&y =\frac{-q^{2} \pm p i}{2}\end{aligned}

Therefore, y has two values:

y=\frac{-q^2 + p i}{2};

y=\frac{-q^2 - p i}{2}

To learn more about quadratic formula, visit:

https://brainly.in/question/22194098

To learn more about solving equations, visit:

https://brainly.in/question/9605334

#SPJ3

Similar questions