Solve for y: 4y2 4qy-(p2-q2)=0
Answers
Answered by
2
Assuming you're talking about
![4 {y}^{2} + 4qy + ( {p}^{2} - {q}^{2} ) 4 {y}^{2} + 4qy + ( {p}^{2} - {q}^{2} )](https://tex.z-dn.net/?f=4+%7By%7D%5E%7B2%7D++%2B+4qy+%2B+%28+%7Bp%7D%5E%7B2%7D++-++%7Bq%7D%5E%7B2%7D+%29)
Here, a = 4, b = 4q and c = (p^2-q^2)
Applying the quadratic formula for roots,
![\frac{ - b ± \sqrt{ {b}^{2} - 4ac } }{2a} \\ \frac{ - b ± \sqrt{ {b}^{2} - 4ac } }{2a} \\](https://tex.z-dn.net/?f=+%5Cfrac%7B+-+b+%C2%B1++%5Csqrt%7B+%7Bb%7D%5E%7B2%7D+-+4ac+%7D+%7D%7B2a%7D++%5C%5C)
Substitute the values,
![\frac{ - 4q± \sqrt{ {(4q)}^{2} - 4(4)( {p}^{2} - {q}^{2}) } }{2(4)} \\ \\ = \frac{ - 4q± \sqrt{16 {q}^{2} - 16 {p }^{2} + 16 {q}^{2} } }{8} \\ \\ = \frac{ - 4q± 4p\sqrt{ - 1 } }{8} \\ \\ = \frac{ - 4q±4pi}{8} \\ \\ = \frac{ - q±pi}{2} \frac{ - 4q± \sqrt{ {(4q)}^{2} - 4(4)( {p}^{2} - {q}^{2}) } }{2(4)} \\ \\ = \frac{ - 4q± \sqrt{16 {q}^{2} - 16 {p }^{2} + 16 {q}^{2} } }{8} \\ \\ = \frac{ - 4q± 4p\sqrt{ - 1 } }{8} \\ \\ = \frac{ - 4q±4pi}{8} \\ \\ = \frac{ - q±pi}{2}](https://tex.z-dn.net/?f=+%5Cfrac%7B+-+4q%C2%B1+%5Csqrt%7B+%7B%284q%29%7D%5E%7B2%7D+-+4%284%29%28+%7Bp%7D%5E%7B2%7D+-++%7Bq%7D%5E%7B2%7D%29+++%7D+%7D%7B2%284%29%7D+%5C%5C++%5C%5C++%3D++%5Cfrac%7B+-+4q%C2%B1+%5Csqrt%7B16+%7Bq%7D%5E%7B2%7D++-+16+%7Bp+%7D%5E%7B2%7D++%2B+16+%7Bq%7D%5E%7B2%7D+%7D+%7D%7B8%7D+++%5C%5C++%5C%5C++%3D++%5Cfrac%7B+-+4q%C2%B1+4p%5Csqrt%7B+-++1+%7D+%7D%7B8%7D++%5C%5C++%5C%5C++%3D++%5Cfrac%7B+-+4q%C2%B14pi%7D%7B8%7D++%5C%5C++%5C%5C++%3D++%5Cfrac%7B+-+q%C2%B1pi%7D%7B2%7D+)
Therefore, the two values for y are these.
Here, a = 4, b = 4q and c = (p^2-q^2)
Applying the quadratic formula for roots,
Substitute the values,
Therefore, the two values for y are these.
Answered by
0
Answer:
There are two values for y:
; and
;
Explanation:
The given equation :
we can use the quadratic formula in order to find y:
So, In the given equation,
a = 4; b = 4q; and c=
So, applying the quadratic formula, we get:
Therefore, y has two values:
;
To learn more about quadratic formula, visit:
https://brainly.in/question/22194098
To learn more about solving equations, visit:
https://brainly.in/question/9605334
#SPJ3
Similar questions