Math, asked by Anonymous, 5 days ago

Solve for z : 2(5z – 7) = 4(2z – 3) – 8​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given equation is

\rm \: 2(5z - 7) = 4(2z - 3) - 8 \\

can be rewritten as

\rm \: 10z - 14 = 8z - 12 - 8 \\

\rm \: 10z - 14 = 8z - 20 \\

On transposition, we get

\rm \: 10z -8z =  - 20 + 14 \\

\rm \: 2z =  - 6 \\

\rm\implies \:z \:  =  \:  -  \: 3 \\

Verification

Consider LHS

\rm \: 2(5z - 7) \\

On substituting the value of z, we get

\rm \: =  \:  2(5 \times ( - 3) - 7) \\

\rm \: =  \:  2( - 15 - 7) \\

\rm \: =  \: 2 \times ( - 22) \\

\rm \: =  \:  - 44 \\

Now, Consider RHS

\rm \: 4(2z - 3) - 8 \\

On substituting the value of z, we get

\rm \:  =  \: 4(2 \times ( - 3) - 3) - 8 \\

\rm \:  =  \: 4( - 6 - 3) - 8 \\

\rm \:  =  \: 4( - 9) - 8 \\

\rm \:  =  \:  - 36 - 8 \\

\rm \:  =  \:  - 44 \\

\rm\implies \:LHS = RHS \\

Hence, Verified

Answered by ⱮøøɳƇⲅυѕɦεⲅ
7

⇢ 2(5z – 7) = 4(2z – 3) – 8

⇢ 10z - 14 = 8z - 12 - 8

⇢ 10z - 14 = 8z - 20

⇢ 10z - 8z = - 20 + 14

⇢ 2z = -6

⇢ z = -6÷2

⇢ z = -6/2

⇢ z = -3

Similar questions