Math, asked by jatinv37096, 4 months ago

solve
get your answer markes brainlist​

Attachments:

Answers

Answered by AestheticSoul
3

Question :

 \boldsymbol{ \dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3}} = a +b \sqrt{3}}

To find

  • The value of a and b

Solution

Firstly, we will rationalize the denominator.

Multiply the denominator and numerator by the same number.

 \boldsymbol{ \dfrac{(5 + 2 \sqrt{3})(7 - 4 \sqrt{3} ) }{(7 + 4 \sqrt{3})(7 - 4 \sqrt{3} )}}

Here, we will use an algebraic identity.

Identity to be used :-

 \gray{\pmb{(a - b)(a + b) =  {a}^{2} -  {b}^{2}}}

 \\ : \implies \boldsymbol{ \dfrac{(5 + 2 \sqrt{3})(7 - 4 \sqrt{3} ) }{(7)^{2}   -  (4 \sqrt{3})^{2}}}

 \\ : \implies \boldsymbol{ \dfrac{(5 + 2 \sqrt{3})(7 - 4 \sqrt{3} ) }{49   -  48}}

[Note :- When two underoots are multiplied, underoot gets removed.]

  \gray{\pmb{ \sqrt{3} \times  \sqrt{3}  = 3 }}

 \\ : \implies \boldsymbol{ \dfrac{(5 + 2 \sqrt{3})(7 - 4 \sqrt{3} ) }{1}}

 \\ : \implies \boldsymbol{ \dfrac{5 (7 - 4 \sqrt{3} ) + 2 \sqrt{3} (7 - 4 \sqrt{3} ) }{1}}

 \\ : \implies \boldsymbol{35 - 20 \sqrt{3} + 28 \sqrt{3} - 24}

 \\ : \implies \boldsymbol{11 + 8 \sqrt{3}}

 \\ : \implies \boldsymbol{11 + 8 \sqrt{3} = a + b \sqrt{3} }

 \\ : \implies \boldsymbol{a = 11 }

 \\ : \implies \boldsymbol{b \sqrt{3} = 8 \sqrt{3}  }

 \\ : \implies \boldsymbol{b  \cancel{\sqrt{3}}= 8  \cancel{\sqrt{3} } }

 \\ : \implies \boldsymbol{b =8 }

 \therefore \underline{ \orange{\pmb{value \: of \: a = 11 \: and \: b = 8}}}

━━━━━━━━━━━━━━━

Some useful identities :-

  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab
  • (a + b)³ = a³ + b³ + 3ab(a + b)
  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions