Math, asked by Anonymous, 1 month ago

Solve given question​

Attachments:

Answers

Answered by Anonymous
6

Answer:

Option (B) is correct

Step-by-step explanation:

We are given the complex number,

 \longrightarrow z=\dfrac{1 + 2i}{1 - (1 - i)^{2} }

 \longrightarrow z=\dfrac{1 + 2i}{1 - (1^{2} +  {i}^{2}   - 2(1)(i) )}

 {\longrightarrow z=\dfrac{1 + 2i}{1 - (1  - 1   - 2i)}\qquad(\therefore i^2=-1)}

 \longrightarrow z=\dfrac{1 + 2i}{1 - (  - 2i)}

 \longrightarrow z=\dfrac{1 + 2i}{1  +  2i}

 \longrightarrow z=1

So the given complex number is 1.

We have to find it's amplitude and magnitude i.e. modulus.

So, modulus of complex number is given by,

 \leadsto |z|  =  \sqrt{Im(z)^2+Re(z)^2}

 \leadsto |z|  =  \sqrt{(0)^2+(1)^2}

 \leadsto |z|  =  \sqrt{0 + 1}

 \leadsto |z|  = 1

So the modulus of the complex number is 1.

Now, the amplitude of complex number is given by,

{\implies Am(z) = \tan^-\left | \dfrac{Im(z)}{Re(z)}\right | }

{\implies Am(z) = \tan^-\left | \dfrac{0}{1}\right | }

{\implies Am(z) = \tan^-\left | 0\right | }

{\implies Am(z) = 0}

So the amplitude of complex number is 0.

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\:\dfrac{1 + 2i}{1 -  {(1 - i)}^{2} }

Let we assume that

\rm :\longmapsto\:z = \dfrac{1 + 2i}{1 -  {(1 - i)}^{2} }

\rm :\longmapsto\:z = \dfrac{1 + 2i}{1 -  [1 +  {i}^{2}  - 2i] }

\rm :\longmapsto\:z = \dfrac{1 + 2i}{1 -  [1  - 1  - 2i] }

\rm :\longmapsto\:z = \dfrac{1 + 2i}{1 -  [- 2i] }

\rm :\longmapsto\:z = \dfrac{1 + 2i}{1  + 2i }

\bf\implies \:z = 1

Now, let we assume that,

\rm :\longmapsto\:1 =  r(cos\theta + i \: sin\theta)

\rm :\longmapsto\:1 + 0i =  rcos\theta + i \: r \: sin\theta

On comparing, real and Imaginary parts, we get

\rm :\longmapsto\:rcos\theta = 1 -  -  - (1)

and

\rm :\longmapsto\:rsin\theta = 0 -  -  - (2)

On squaring equation (1) and (2), we get

\rm :\longmapsto\: {r}^{2} {cos}^{2}\theta = 1

and

\rm :\longmapsto\: {r}^{2} {sin}^{2}\theta = 0

On adding above 2 equations, we get

\rm :\longmapsto\: {r}^{2} {cos}^{2}\theta +  {r}^{2} {sin}^{2}\theta = 1 + 0

\rm :\longmapsto\: {r}^{2} ({cos}^{2}\theta + {sin}^{2}\theta )= 1

\rm :\longmapsto\: {r}^{2} = 1

\bf\implies \:r = 1

On dividing equation (2) by equation (1), we get

\rm :\longmapsto\:\dfrac{rsin\theta}{rcos\theta}  = \dfrac{0}{1}

\rm :\longmapsto\:tan\theta = 0

\bf\implies \:\theta = 0

Hence,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{ |z|  = 1} \\ \\  &\sf{\theta = 0} \end{cases}\end{gathered}\end{gathered}

Hence,

  • Option (b) is correct.

Similar questions