Math, asked by sandyar377, 19 days ago

solve graphically 2x+y=6, x+y=4 ​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Consider first equation

\rm \: 2x + y = 6 \\

Substituting 'x = 0' in the given equation, we get

\rm \: 2 \times 0 + y = 6 \\

\rm \: 0 + y = 6 \\

\rm\implies \:y = 6 \\

Substituting 'y = 0' in the given equation, we get

\rm \: 2x + 0 = 6 \\

\rm \: 2x = 6 \\

\rm\implies \:x = 3 \\

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\color{blue}\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 6 \\ \\ \sf 3 & \sf 0 \end{array}} \\ \end{gathered}

Consider second equation

\rm \: x + y = 4 \\

Substituting 'x = 0' in the given equation, we get

\rm \: 0 + y = 4 \\

\rm\implies \:y = 4 \\

Substituting 'y = 0' in the given equation, we get

\rm \: x + 0 = 4 \\

\rm\implies \:x = 4 \\

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\color{green}\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 4 \\ \\ \sf 4 & \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , 6), (3 , 0), (0, 4) & (4 , 0)

➢ See the attachment graph.

Now, from graph we concluded that system of equations is consistent having unique solution and solution is

\rm\implies \:\boxed{ \rm{ \:x = 2 \: \:  \: and \:  \:  \: y = 2 }} \\

Attachments:
Answered by AnanyaBaalveer
5

\huge\underline{\sf{Solution =  > }}

\large\underline{\sf{consider \: first \: equation..}}

 \implies \large\underline{\sf{2x + y = 6}}

\large{\sf{substituting \: x = 0 \: in \: the \: }}

\large\underline{\sf{equation \: we \: get}}

\large\underline{\sf{2 \times 0 + y = 6}}

\large\underline{\sf{0 + y = 6}}

\large\underline{\sf{y = 6}}

\large\underline{\sf{substituting \: y = 0 \: in \: the \: }}

\large\underline{\sf{equation \: we \: get}}

\large\underline{\sf{2x + 0 = 6}}

\large\underline{\sf{2x = 6}}

\large\underline{\sf{x = 6 \div 2}}

\large\underline{\sf{x = 3}}

\large\underline{\sf{ hence}}

\large\underline{\sf{ \rightarrow pair \: of \: points \: of \: the \: given}}

\large\underline{\sf{equation \: of \: points \: are}}

\large\underline{\sf{x \:  \:  \:  \:  \:  \:  \:  \:  \: y}} \\ \large\underline{\sf{0 \:  \:  \:  \:  \:  \:  \:  \:  6}} \\ \large\underline{\sf{3 \:  \:  \:  \:  \:  \:  \:  \:  0}}

\large\underline{\sf{consider \:   {2}^{nd} \: equation}}

\large\underline{\sf{x + y = 4}}

\large\underline{\sf{substituting \: x = 0 \: in \: the}}

\large\underline{\sf{given \: equation \: we \: get}}

\large\underline{\sf{0 + y = 4}}

\large\underline{\sf{y = 4}}

\large\underline{\sf{Substituting \: y = 0 \: in \: the \: }}

\large\underline{\sf{given \: equation \: we \: get}}

\large\underline{\sf{x + 0 = 4}}

\large\underline{\sf{x = 4}}

\large\underline{\sf{hence}}

\large\underline{\sf{pair \: of \: points \: of \: the \: given}}

\large\underline{\sf{equation \: are:}}

\large\underline{\sf{x \:  \:  \:  \:  \:  \: y}} \\ \large\underline{\sf{0 \:  \:  \:  \:  \:  \:  4}} \\ \large\underline{\sf{4 \:  \:  \:  \:  \:  \:   0}}

\large\underline{\sf{now \: draw \: a \: graph \: using }}

\large\underline{\sf{the \: point \: (0.6)(3.0)(0.4)}}

\large\underline{\sf{and \: (4.0)}}

\large\underline{\sf{see \: the \: attached \: graph}}

\large\underline{\sf{now \: from \: graph \: we \: concluded}}

\large\underline{\sf{that \: system \: of \: equation \: is}}

\large\underline{\sf{constitent \: having \: unique}}

\large\underline{\sf{solution \: ans \: solution \: is}}

 \implies \large\underline{\sf{x = 2 \:  \:  \:. \:  \:  \:  y = 2}}

Attachments:
Similar questions