Math, asked by artidhankhar3, 2 months ago

solve he following pair of equation a(x+y) +b(x-y) =a^2+b^2-ab and a(x+y) -b(x-y) =a^2+b^2+ab​

Answers

Answered by ishukaintura
0

Answer:

Given:

a(x+y) + b(x-y) = a² - ab + b² ..(i).,

a(x+y) - b(x-y) = a² + ab - b² ...(ii)

_____________________________________________________________

To find,

The values of x and y.

_____________________________________________________________

Adding both the equations,

We get,

=> a(x + y) + b(x - y) + a(x + y) - b(x - y) = a² - ab + b² + a² +ab - b²

=> 2a(x + y) = 2a²

=> x + y = a ...(iii),

____________________

Subtracting (ii) from (i),

=> a(x + y) + b(x - y) -(a(x + y) - b(x - y)) = a² - ab + b² - (a² + ab -b²)

=> a(x + y) + b(x - y) - a(x - y) + b(x - y) = a² - ab + b² - a² - ab + b²

=> 2b(x - y) = -2ab + 2b²

=> 2b(x - y) = 2b² - 2ab

=> 2b(x - y) = 2b(b - a)

=> x - y = b - a ..(iv)

_______________________

Adding (iii) & (iv),

We get,

=> (x + y) + (x - y) a + b- a

=> 2x = b

=> ∴ x = \frac{b}{2}x=

2

b

__________________________

Substituting value of x in (iv),

We get,

=> x - y = b - a

=> \frac{b}{2} - y = b - a

2

b

−y=b−a

=> -y = b-a- \frac{b}{2}−y=b−a−

2

b

=> -y = \frac{b}{2} - a−y=

2

b

−a

=> ∴ y = a - \frac{b}{2}y=a−

2

b

_____________________________________________________________

Hope it Helps!!

Similar questions