Math, asked by tejas824649, 3 months ago

solve hurry please...​

Attachments:

Answers

Answered by vipashyana1
1

Answer:

 \sqrt{ \frac{ secθ- 1}{secθ + 1} }  +  \sqrt{ \frac{secθ + 1}{ secθ- 1} }  = 2cosecθ \\ \sqrt{ \frac{ secθ- 1}{secθ + 1} } \times \sqrt{ \frac{ secθ- 1}{secθ  -  1} }    +  \sqrt{ \frac{secθ + 1}{ secθ- 1} } \times \sqrt{ \frac{ secθ + 1}{secθ + 1} }    = 2cosecθ  \\  \sqrt{ \frac{(secθ - 1)(secθ - 1)}{( secθ+ 1)(secθ - 1)} }  +  \sqrt{ \frac{( secθ+ 1)( secθ+ 1)}{(secθ - 1)(sec θ+ 1)} }  = 2cosecθ \\  \sqrt{ \frac{ {(secθ - 1)}^{2} }{ {(secθ)}^{2} -  {(1)}^{2}  } }  +  \sqrt{ \frac{ {(secθ + 1)}^{2} }{ {(secθ)}^{2}  -  {(1)}^{2} } }  = 2cosecθ \\  \sqrt{ \frac{ {(secθ - 1)}^{2} }{ {sec}^{2}θ - 1 } }  +  \sqrt{ \frac{ {(secθ + 1)}^{2} }{ {sec}^{2} θ - 1} }  = 2cosecθ \\  \sqrt{ \frac{ {( secθ- 1)}^{2} }{ {tan}^{2}θ } }  +  \sqrt{ \frac{ {(sec θ+ 1)}^{2} }{ {tan}^{2}θ } }  = 2cosecθ \\  \frac{secθ - 1}{tanθ}  +  \frac{secθ + 1}{tanθ}  = 2cosecθ \\  \frac{secθ - 1 +secθ +  1}{tanθ}  = 2cosecθ \\  \frac{2secθ}{tanθ}  = 2cosecθ \\  \frac{2 \times  \frac{1}{cosθ} }{ \frac{sinθ}{cosθ} }  = 2cosecθ \\ 2 \times  \frac{1}{cosθ}  \times  \frac{cosθ}{sinθ}  = 2cosecθ \\ 2 \times  \frac{1}{sinθ}  = 2cosecθ \\ 2cosecθ = 2cosecθ \\ LHS=RHS \\ Hence \: proved

Answered by Anonymous
0

Answer:

my Sn.ap id is ItzRealQueen

Similar questions